International Journal of Advanced Research in Science, Engineering and Technology

Vol. 1, Issue 5, December 2014

Observations on the Non-Homogeneous Sextic Equation with Six Unknowns

S.Vidhyalakshmi, A.Kavitha, M.A.Gopalan
Professor, Department of Mathematics, Shrimati Indira Gandhi College, Tiruchirappalli, India
Lecturer, Department of Mathematics, Shrimati Indira Gandhi College, Tiruchirappalli, India
Professor, Department of Mathematics, Shrimati Indira Gandhi College, Tiruchirappalli, India

Abstract

The sextic non-homogeneous equation with six unknowns represented by the Diophantine equation $\mathrm{x}^{6}-\mathrm{y}^{6}-2 \mathrm{z}^{3}=\left(\mathrm{k}^{2}+\mathrm{s}^{2}\right)^{2 \mathrm{n}} \mathrm{T}^{4}\left(\mathrm{w}^{2}-\mathrm{p}^{2}\right)$ is analyzed for its patterns of non-zero distinct integral solutions are illustrated. Various interesting relations between the solutions and special numbers, namely polygonal numbers, Pyramidal numbers, Jacobsthal numbers, Jacobsthal-Lucas number are exhibited.

KEYWORDS: Integral solutions, sextic, non-homogeneous equation.

I. INTRODUCTION

The theory of Diophantine equations offers a rich variety of fascinating problems [1-4]. Particularly, in [5-7], sextic equations with three unknowns are studied for their integral solutions. [8-14] analyze sextic equations with four unknowns for their non-zero integer solutions [15-17] analyze sextic equations with five unknowns for their non-zero solutions. This communication concerns with yet another interesting a non-homogeneous sextic equation with six unknowns given by $x^{6}-y^{6}-2 z^{3}=\left(k^{2}+s^{2}\right)^{2 n} T^{4}\left(w^{2}-p^{2}\right)$. Infinitely many non-zero integer tuple (x, y, z) satisfying the above equation are obtained. Various interesting properties among the values of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are presented

II .NOTATIONS

$K Y_{n}$: Polygonal number of rank n with size m
$P r_{n}$: Pyramidal number of rank n with size m
$j_{n} \quad:$ Jacobsthal lucas number of rank n
$J_{n} \quad$: Jacobsthal number of rank n

III. METHOD OF ANALYSIS

The equation under consideration is $x^{6}-y^{6}-2 z^{3}=\left(k^{2}+s^{2}\right)^{2 n} T^{4}\left(w^{2}-p^{2}\right)$
Where k and s are given non-zero integers. Different patterns of solutions to (1) are illustrated below:

A. Pattern: 1

Introduction of the transformations
$x=u+v, y=u-v, z=2 u v, w=u v+3, p=u v-3$
in (1) leads to

$$
\begin{equation*}
u^{2}+v^{2}=\left(k^{2}+s^{2}\right)^{n} T^{2} * 1 \tag{2}
\end{equation*}
$$

Let
$T=a^{2}+b^{2}$
write (1) as

$$
\begin{equation*}
1=\frac{[(1+i)(1-i)]^{2 n}}{2 n} \tag{3}
\end{equation*}
$$

Substituting (4) and (5) in (3) and employing the method of factorization, define

$$
\begin{equation*}
u+i v=(k+i s)^{n}(a+i b)^{2} \frac{(1+i)^{2 n}}{2^{n}} \tag{6}
\end{equation*}
$$

Since the complex number raised to any positive integer power is also a complex number, we write

ISSN: 2350-0328

International Journal of Advanced Research in Science, Engineering and Technology

Vol. 1, Issue 5, December 2014

$$
\begin{equation*}
(k+i s)^{n}=\alpha+i \beta \tag{7}
\end{equation*}
$$

where $\alpha=\frac{1}{2}\left[(k+i s)^{n}+(k-i s)^{n}\right]$

$$
\beta=\frac{1}{2}\left[(k+i s)^{n}-(k-i s)^{n}\right]
$$

Using (7) in (6) and equating real and imaginary parts, we have

$$
\left.\begin{array}{c}
u=\operatorname{cosn} \frac{\pi}{2}\left[\alpha\left(a^{2}-b^{2}\right)-2 \beta a b\right]-\operatorname{sinn} \frac{\pi}{2}\left[\alpha(2 a b)+\beta\left(a^{2}-b^{2}\right)\right] \\
v=\sin \frac{\pi}{2}\left[\alpha\left(a^{2}-b^{2}\right)-2 \beta a b\right]-\cos n \frac{\pi}{2}\left[\alpha(2 a b)+\beta\left(a^{2}-b^{2}\right)\right] \tag{8}
\end{array}\right\}
$$

Using (8) in (2) we get

$$
\left.\begin{array}{c}
x(a, b)=\left[\alpha\left(a^{2}-b^{2}\right)-2 \beta a b\right]\left[\cos \frac{n \pi}{2}+\sin \frac{n \pi}{2}\right]+\left(\alpha(2 a b)+\beta\left(a^{2}-b^{2}\right)\right)\left(\cos \frac{n \pi}{2}-\operatorname{sinn} \frac{n \pi}{2}\right) \\
y(a, b)=\left[\alpha\left(a^{2}-b^{2}\right)-2 \beta a b\right]\left[\cos \frac{n \pi}{2}-\sin \frac{n \pi}{2}\right]-\left[\alpha(2 a b)+\beta\left(a^{2}-b^{2}\right)\right]\left[\sin \frac{n \pi}{2}+\cos \frac{n \pi}{2}\right] \\
z(a, b)=2\left[\cos \frac{n \pi}{2}\left(\alpha\left(a^{2}-b^{2}\right)-2 \beta a b\right)-\sin \frac{n \pi}{2}\left[\alpha(2 a b)+\beta\left(a^{2}-b^{2}\right)\right] \sin \frac{n \pi}{2}\left[\alpha\left(a^{2}-b^{2}\right)-2 \beta a b\right]+\right. \\
\left.\operatorname{cosn} \frac{n \pi}{2}\left(\alpha(2 a b)+\beta\left(a^{2}-b^{2}\right)\right)\right] \\
w(a, b)=\left\{\cos \frac{n \pi}{2}\left[\alpha\left(a^{2}-b^{2}\right)-2 \beta a b\right]-\sin \frac{n \pi}{2}\left[\alpha(2 a b)+\beta\left(a^{2}-b^{2}\right)\right]\right\} \\
\left\{\sin \frac{n \pi}{2}\left[\alpha\left(a^{2}-b^{2}\right)-2 \beta a b\right]+\cos \frac{n \pi}{2}\left[\alpha(2 a b)+\beta\left(a^{2}-b^{2}\right)\right]\right\}+3 \\
p(a, b)=\left\{\cos \frac{n \pi}{2}\left[\alpha\left(a^{2}-b^{2}\right)-2 \beta a b\right]-\sin \frac{n \pi}{2}\left[\alpha(2 a b)+\beta\left(a^{2}-b^{2}\right)\right]\right\} \\
\left\{\sin \frac{n \pi}{2}\left[\alpha\left(a^{2}-b^{2}\right)-2 \beta a b\right]+\cos \frac{n \pi}{2}\left[\alpha(2 a b)+\beta\left(a^{2}-b^{2}\right)\right]\right\}-3 \tag{9}
\end{array}\right\}
$$

Thus (4) and (9) represent the non-zero integer solutions to (1)
For illustration and clear understanding, substituting $n=1$, in (9), the corresponding non-zero distinct integral solutions to (1) are given by
$x(a, b)=\alpha\left(a^{2}-b^{2}+2 a b\right)+\beta\left(a^{2}-b^{2}-2 a b\right)$
$y(a, b)=\alpha\left(a^{2}-b^{2}-2 a b\right)-\beta\left(a^{2}-b^{2}+2 a b\right)$
$\mathrm{w}(\mathrm{a}, \mathrm{b})=\left[\alpha\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)-2 \beta a b\right]\left[\alpha(2 a b)+\beta\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)\right]+3$
$p(a, b)=\left[\alpha\left(a^{2}-b^{2}\right)-2 \beta a b\right]\left[\alpha(2 a b)+\beta\left(a^{2}-b^{2}\right)\right]-3$
$T(a, b)=a^{2}+b^{2}$
B. Properties
(i) $x(s, s+1)+y(s, s+1)=2 \alpha\left[t_{3, s}-2 t_{4, s}+1\right]-4 \beta P r_{s}$
(ii) $x\left(2^{s}, 1\right)=(\alpha+\beta)\left(3 J_{2 s}\right)+2(\alpha-\beta)\left(j_{s}-(-1)^{s}\right)$
(iii) $y\left(2^{s}, 1\right)=\alpha\left(3 J_{2 s}-j_{s+1}+(-1)^{s+1}\right)-\beta\left(K Y_{s}\right)$

Note:

Suppose, we choose k and s such that $k^{2}+s^{2}=\sigma^{2}$. Then (3) becomes

$$
\begin{equation*}
u^{2}+v^{2}=\left(\sigma^{n} T\right)^{2} \tag{10}
\end{equation*}
$$

which is in the form of the Pythagorean equation. For this choice, the sextuple (x, y, z, w, p, T) satisfying (1) is given by
$x=\sigma^{2 n}\left[p^{2}-q^{2}+2 p q\right]$
$y=\sigma^{2 n}\left[-p^{2}+q^{2}+2 p q\right]$
$\mathrm{z}=4 \sigma^{4 \mathrm{n}}\left[\mathrm{p}^{2}-\mathrm{q}^{2}\right] \mathrm{pq}$
$\mathrm{w}=2 \mathrm{pq}\left[\mathrm{p}^{2}-\mathrm{q}^{2}\right]+3$
$\mathrm{p}=2 \mathrm{pq}\left[\mathrm{p}^{2}-\mathrm{q}^{2}\right]-3$
$T=\sigma^{n}\left(p^{2}+q^{2}\right)$
It is observed that the above values are different from (4) and (9)

C. Pattern. 2

Note that (10) is written in the form of ratio as

$$
\begin{equation*}
\frac{\sigma^{n} T+v}{u}=\frac{u}{\sigma^{n} T-v}=\frac{A}{B}, \quad B \neq 0 \tag{11}
\end{equation*}
$$

which is equivalent to the system of equation

$$
\left.\begin{array}{l}
\left(\sigma^{n} B\right) T+B v-A u=0 \tag{12}\\
\left(\sigma^{n} A\right) T-A v-B u=0
\end{array}\right\}
$$

International Journal of Advanced Research in Science, Engineering and Technology

Vol. 1, Issue 5, December 2014

Applying the method of cross multiplication to the above system, we obtain

$$
\begin{gather*}
u=-2 \sigma^{n} A B \\
v=\sigma^{n}\left(B^{2}-A^{2}\right) \tag{13}\\
T=-\left(A^{2}+B^{2}\right) \tag{14}
\end{gather*}
$$

Thus from (13) and (2), we get

$$
\left.\begin{array}{c}
x=\sigma^{n}\left(B^{2}-A^{2}-2 A B\right) \\
y=\sigma^{n}\left(B^{2}-A^{2}+2 A B\right) \\
z=-4 \sigma^{2 n}\left(B^{2}-A^{2}\right) A B \tag{15}\\
w=-2 \sigma^{2 n} A B\left(B^{2}-A^{2}\right)+3 \\
p=-2 \sigma^{n} A B\left(B^{2}-A^{2}\right)-3
\end{array}\right\}
$$

Hence, (15) and (14) represent the integral solutions of (1)
D. Properties:
(i) $w^{3}+p^{3}+3 z p w=z^{3}$
(ii) $x^{2}-y^{2}=2(w+p)$
(iii) $x^{2}-y^{2}-4 p \equiv 0(\bmod 12)$
(iv) $\left(x^{2}-y^{2}\right)^{2}=z^{2}(w-p-2)$
(v) $z^{2}-4 w^{2}+24 w \equiv 0(\bmod 9)$

IV. REMARKABLE OBSERVATIONS

(i) The triple ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) satisfies the hyperbolic paraboloid $x^{2}-y^{2}=2 z$
(ii) If $\alpha>\beta$ and $a^{2}-b^{2}>2 a b$, then $u>v$. Let (α, β, γ) be the Pythagorean triangle with u, v as generators. Set $\alpha=2 u v, \beta=u^{2}-v^{2}, \gamma=u^{2}+v^{2}$ and A,P represent its area and perimeter respectively. Note that
(i) $x y z=2 A$
(ii) $\frac{4 \mathrm{~A}}{\mathrm{P}}=(\mathrm{x}-\mathrm{y}) \mathrm{y}$

V. CONCLUSION

It is worth to mention here that, the values of w and p in (2) may be considered as (i) $w=3 u v+1, \quad p=3 u-v$ and (ii) $\mathrm{w}=3 \mathrm{uv}+1, \mathrm{p}=3 \mathrm{uv}-1$. Further, in addition to (5), one may also write 1 as
$1=\frac{\left(p^{2}-q^{2}+2 i p q\right)\left(p^{2}-q^{2}-2 i p q\right)}{\left(p^{2}+q^{2}\right)^{2}}$ Following the analysis presented above, one may obtain other patterns of non-zero integer solutions to (1)

To conclude, one may search for other choice of transformations to analyze (1) for its non-zero distinct integral solutions

VI. ACKNOWLEDGEMENT

The finical support from the UGC, New Delhi (F.MRP-5123/14(SERO/UGC) dated march 2014) for a part of this work is gratefully acknowledged.

REFERENCES

[1] L.E.Dickson, History of Theory of Numbers, Chelsea Publishing company, New York, Vol.11, (1952).
[2] L.J.Mordell, Diophantine eequations, Academic Press, London (1969).
[3].Telang,S.G., Number theory, Tata Mc Graw Hill publishing company, New Delhi (1996)
[4] Carmichael, R.D., The theory of numbers and Diophantine Analysis, Dover Publications, New York (1959).
[5] M.A.Gopalan and Sangeetha.G., On the sextic equations with three unknowns $x^{2}-x y+y^{2}=\left(k^{2}+3\right)^{n} z^{6}$, Impact J.Sci.tech. Vol.4, No:4, 8993, (2010).
[6] M.A.Gopalan.Manju Somnath and N.Vanitha, Parametric Solutions of $x^{2}-y^{6}=z^{2}$, Acta ciencia indica, XXXIII,3,1083-1085(2007).
[7]M.A.Gopalan and A.VijayaSankar, Integral Solutions of the sextic equation $x^{4}+y^{4}+z^{4}=2 w^{6}$, Indian Journal of Mathematics and mathematical sciences,Vol.6, No2, 241-245, (2010).
[8]M.A.Gopalan, S.Vidhyalakshmi and A.Vijayasankar, Integral solutions of hon- Homogeneous sextic equation $x y+z^{2}=w^{6}$, impact j.Sci.tech., Vol.6, No:1, 47-52, 2012.
[9]M.A. Gopalan, S.Vidhyalakshmi and K.Lakshmi, On the non-homogeneous sextic equation $x^{4}+2\left(x^{2}+w\right)+x^{2} y^{2}+y^{4}=z^{4}$, IJAMA,4(2), 171-173, Dec. 2012
[10]M.A.Gopalan, S.Vidhyalakshmi and A.Vijayasankar, Integral solutions of hon- Homogeneous sextic equation $x y+z^{2}=w^{6}$, Impact J.Sci.tech., Vol.6, No:1, 47-52, 2012.

ISSN: 2350-0328

International Journal of Advanced Research in Science, Engineering and Technology

Vol. 1, Issue 5, December 2014

[11]M.A. Gopalan, S.Vidhyalakshmi and K.Lakshmi, On the non-homogeneous sextic equation $x^{4}+2\left(x^{2}+w\right)+x^{2} y^{2}+y^{4}=z^{4}$, IJAMA,4(2), 171-173, Dec. 2012
[12].M.A.Gopalan, G.Sumathi and S.Vidhyalakshmi, Integral solutions of $x^{6}-y^{6}=4 z\left(x^{4}+y^{4}+4\left(w^{2}+2\right)^{2}\right)$ interms of Generalised Fibonacci and Lucas Sequences, Diophantous J.Math., 2(2),71-75, 2013.
[13].M.A.Gopalan, G.Sumathi and S.Vidhyalakshmi, Integral solutions of non-homogeneous sextic equation with four unknowns $x^{4}+y^{4}+16 z^{4}=$ 32w ${ }^{6}$, Antarctica J.math., 10(6), 623-629, 2013.
[14].M.A.Gopalan, S.vidhyalakshmi and A.kavitha, Observations on the non-homgeneous sextic equation with four unknowns $x^{3}+y^{3}=2\left(k^{2}+\right.$ 3) $z^{5} w$, IJIRSET, Vol.2, issue.5, May-2013.
[15].M.A.Gopalan, G.Sumathi and S.Vidhyalakshmi, Integral solutions of non-homogeneous sextic equation with five unknowns $x^{3}+y^{3}=z^{3}+$ $w^{3}+6(x+y) t^{5}$, Vol.1, issue.2, 146-150, 2013.
[16].M.A.Gopalan, S.vidhyalakshmi and K.Lakshmi, Integral solutions of non-homogeneous sextic equation with five unknowns $x^{3}+y^{3}=z^{3}+$ $w^{3}+3(x+y) T^{5}$, IJESRT, 1(10), 562-564, 2012.
[17].M.A.Gopalan, S.vidhyalakshmi and K.Lakshmi, Integral solutions of the sextic equation with five unknowns $x^{6}-6 w^{2}(x y+z)+y^{6}=$ $2\left(y^{2}+w\right) T^{4}$, International journal of scientific and research publications, Vol.4, issue.7, July-2014.

