

ISSN: 2350-0328

International Journal of Advanced Research in Science, Engineering and Technology

Vol. 3, Issue 2 , February 2016

Square Harmonious Graphs

N. Adalin Beatress, P.B.Sarasija

Department of Mathematics, All Saint College of Education, Kaliyakkavilai, Tamil Nadu. Department of Mathematics, Noorul Islam Centre for Higher Education, Kumaracoil, Tamil Nadu

ABSTRACT: In this paper we have introduced a new harmonious labeling called square harmonious labeling. A graph G(V,E) with n vertices and m edges is said to be a square harmonious graph if there exists an injection $f: V(G) \rightarrow \{1,2,...,m^2+1\}$ such that the induced mapping. $f^*:E(G) \rightarrow \{1,4,9,...,m^2\}$ defined by

 $f^*(uv) = (f(u) + f(v)) \mod (m^2+1)$ is a bijection. the resulting edge labels and vertex labels are distinct. The function f is called a square harmonious labeling of G. Here we prove that path graph, star graph, bistar graph, corona graph $P_n \odot pk_1$, the graph $C_3 @ pk_1$ and the comb graph $P_n \odot k_1$ are Square harmonious graph.

KEYWORDS: Harmonious labeling, Bistar, Comb graph

I. INTRODUCTION

In this paper, we consider finite, undirected, simple graph G(V,E) with n vertices and m edges. For notations and terminology we follow Bondy and Murthy [1]. Harmonious graphs naturally arose in the study by Graham and Sloane [3] of modular versions of additive base problems. Square graceful graphs were introduced in [4]. For a detailed survey on graph labeling we refer to Gallian [2]. We also refer [5,6,7]

Definition : A graph G(V,E) with n vertices and m edges is said to be a square harmonious graph if there exists an injection $f: V(G) \rightarrow \{1,2,...,(m^2+1)\}$ such that the induced mapping $f^*:E(G) \rightarrow \{1,4,9,...,m^2\}$ defined by $f^*(uv) = (f(u) + f(v)) \mod (m^2+1)$ is a bijection, the resulting edge labels and vertex labels are distinct. The function f is called a square harmonious labeling of G.

In this paper, we prove that the path graph, star graph, bistar graph, the graph $C_3@$ pk₁ and the comb graph $P_n \odot k_1$ are square harmonious graphs.

II Main Results

Theorem 2.1. Every path P_n ($n \ge 3$) is a square harmonious graph.

Proof: Let P_n be a path with n vertices and m = (n-1) edges. Let $V(P_n) = \{v_1, v_2, \dots, v_n\}$ and

 $E(P_n) = \{ v_i v_{i+1}, 1 \le i \le n-1 \}$. Define an injection function $f: V(P_n) \rightarrow \{1, 2, 3, ..., m^2+1\}$ by

$$f(v_1) = 3$$
, $f(v_2) = 1$, $f(v_3) = m^2 + 1$, and $f(v_4) = m^2$, $f(v_5) = m^2 - 2n + 4$,

$$f(v_{2i}) = v_{2i-1} + (2i-5), \ 3 \le i \le \left\lfloor \frac{n}{2} \right\rfloor, \quad f(v_{2i+1}) = V_{2i} - 2n + 2i, \ 3 \le i \le \left\lfloor \frac{n-1}{2} \right\rfloor$$

f induces a bijection $f^* : E(P_n) = \{1, 4, 9, \dots, (n-1)^2\}$. $f^*(uv) = (f(u) + f(v)) \mod (m^2+1)$.

The edge labels are distinct. Hence every path P_n , $n \ge 3$ is a square harmonious graph.

International Journal of Advanced Research in Science, Engineering and Technology

ISSN: 2350-0328

Vol. 3, Issue 2 , February 2016

Theorem 2.2. The star graph $k_{1,n}$ is a square harmonious graph for all $n \ge 2$.

Proof: Let $k_{1,n}$ be a star graph with (n+1) vertices and m = n edges. Let $V(k_{1,n}) = \{v_1, v_2, ..., v_{n+1}\}$.Let v_{n+1} be the centre vertex. Let $E(k_{1,n}) = \{v_i \ v_{n+1}, 1 \le i \le n\}$. Define an injective function $f : V(k_{1,n}) \rightarrow \{1, 2, ..., m^2+1\}$ by

$$f(v_{n+1}) = 2m-3, \quad f(v_i) = (m-i+1)^2 - 2m + 3, 1 \le i \le \left\lceil \frac{m}{2} \right\rceil, f\left(v_{\left\lceil \frac{m}{2} \right\rceil} + 1\right) = m^2 - 2m + 5,$$

$$f\left(v_{\left[\frac{m}{2}\right]+j}\right) = v_{\left[\frac{m}{2}\right]+j-1} + 2j - 1, 2 \le j \le \left\lfloor\frac{m}{2}\right\rfloor. f^{*}(uv) = (f(u) + f(v)) \mod (m^{2}+1).$$

Hence the star graph $K_{1,n}$ is a square harmonious graph.

Theorem 2.3. The bistar graph B $_{p,q}$ is a square harmonious labelling graph.

Proof: Let B _{p,q} be a bistar graph with n = p+q+2 vertices and m = p+q+1 edges. Let V(B _{p,q}) = {u_i, 1 ≤ i ≤ p+1, v_j, 1 ≤ j ≤ q+1}, Let E (B _{p,q}) = {u_i u_{p+1}, 1 ≤ i ≤ p, v_jv_{q+1}, 1 ≤ j ≤ q, u_pv_q}. Define an injection function f : V (B _{p,q}) → {1,2,3,....(p+q+1)²+1} by $f(u_{p+1}) = 1, f(u_1) = 3, f(u_i) = u_{i-1}+2i+1, 2 ≤ i ≤ p, (v_{q+1}) = m²+1, f(v_i) = (m-i+1)², 1 ≤ i ≤ q.$ The edge labels are distinct.

Theorem : 2.4. The graph $C_3 @ pK_1$, $(p \ge 2)$ is a square harmonious graph.

Proof : Let u₁,u₂, u₃ be the vertices of C₃ and v₁,v₂,...,v_p be the new vertices. Let V(C₃@ pk₁) = {u₁,u₂,u₃, v₁,v₂,...,v_p}.Let E (C₃@ pk₁) = {u₁u₂,u₂u₃, u₃u₁, u₁p₁,u₁p₂,...,u₁p_p}. Here u₁ is adjacent to v₁,v₂,...,v_p.Define f : V(C₃ @ pK₁) → {1,2,3,...,(P+3)²+1}by f(u₁) = m²+1, f(u₂) = 9, f(u₃) = 16, f(v_i) = (m-i+1)², 1≤ i ≤ p-2, f (v_{p-1}) = 4, f(v_p) = 1 The induced function f* : E (C₃@pK₁) → {1,4,...,(P+3)²} is bijective.

Theorem 2.5. The comb graph $P_n \odot K_{1,}$ $(n \ge 2)$ is a square harmonious graph.

Proof: Let $\{u_1, u_2, ..., u_n\}$ be the vertices of path P_n and $\{v_1, v_2, ..., v_n\}$ be the n pendant vertices of $u_1, u_2, ..., u_n$ respectively. Here m = 2n-1.

Define an injection $f: V(P_n \odot K_1) \rightarrow \{1, 2, 3, \dots, (2n-1)^2+1\}$ by

$$\begin{split} f(u_{2i\text{-}1}) &= i(2i\text{-}1), \ 1 \leq i \ \leq \left\lceil \frac{n}{2} \right\rceil, f\left(u_{2i}\right) = i \ (2i\text{+}1), \ 1 \leq i \ \leq \left\lceil \frac{n}{2} \right\rceil, f(v_1) = m^2 + 1 \ , \\ f\left(v_{2i\text{-}1}\right) &= (m-2i+3)^2 - i \ (2i\text{-}1) \ , \ 2 \leq i \ \leq \left\lceil \frac{n}{2} \right\rceil, \ f\left(v_{2i}\right) = (m-2i+2)^2 - i \ (2i\text{+}1) \ , \ 1 \leq i \ \leq \left\lceil \frac{n}{2} \right\rceil, \\ \text{The induced function} \ f^* : E \ (P_n \ \odot \ K_1) \ \rightarrow \ \{1,4,9, \ \ldots, (2n\text{-}1)^2\} \ \text{is bijective.} \end{split}$$

Theorem 2.6. The corona graph $P_n \odot pK_1$ $(n \ge 2)$ is a square harmonious graph.

Proof: Let { $u_1, u_2, ..., u_n$ } be the vertices of the path P_n and $u_{j1}, u_{j2}, ..., u_{jp}$ be the p pendent vertices of the vertex u_j of the path P_n for $1 \le j \le n$. Here m = mp+n-1.

ISSN: 2350-0328 International Journal of Advanced Research in Science, Engineering and Technology

Vol. 3, Issue 2 , February 2016

Define an injection $f: V(P_n \odot pK_1) \rightarrow \{1, 2, 3, \dots, (np+n-1)^2+1\}$ by

$$\begin{split} f(u_{2i-1}) &= i \ (2i-1) \ , 1 \leq i \ \leq \left\lceil \frac{n}{2} \right\rceil, \qquad f(u_{2i}) = i \ (2i+1) \ , 1 \leq i \ \leq \left\lceil \frac{n}{2} \right\rceil, \quad f(u_{11}) = m^2 + 1, \\ f(u_{2i-1},j) &= [m-p(2i-2) - j+2]^2 - i(2i-1) \ , 2 \leq i \ \leq \left\lceil \frac{n}{2} \right\rceil, 1 \leq j \leq p. \\ f(u_{2i,j}) &= [m-p(2i-1) - j+2]^2 - i(2i+1) \ , 1 \leq i \ \leq \left\lceil \frac{n}{2} \right\rceil, 1 \leq j \leq p. \ u_{ij} = (m-j+2)^2 - 1, \ 2 \leq j \leq p. \\ The induced function \ f^* : E \ (P_n \odot pK_1) \rightarrow \{1,4,..., (np+n-1)^2\} \text{ is bijective.} \\ Hence the corona graph P_n \odot pK_1 \text{ is square harmonious.} \end{split}$$

REFERENCES

- [1]. J.A.BONDY AND U.S.R.MURTHY, GRAPH THEORY WITH APPLICATIONS, MACMILLAN, LONDON, 1976.
- [2] J.A.Gallian, A dynamic survey of graph labeling, The electronics J. of Combinatorics, 16, 2009.
- [3] R.L.,Graham and N.J.A.,Sloane, On additive bases and harmonious graphs, SIAM J. Alg. Discrete Meth., 1(1980) 382-404.
- [4] T.Tharmaraj and P.B.Sarasija, Square graceful graphs, International journal of Mathematics and soft Computing Vol.4 No.1.(2014),129-137
- [5] T.Tharmaraj and P.B.Sarasija, Some Square graceful graphs, International journal of Mathematics and soft Computing Vol.5No.1.(2014),119-127.
- [6] P. B. Sarasija and R. Binthiya, Even harmonious graphs with applications, International Journal of Computer Science and Information Security, Vol.9, No.7, (2011)161-163.
- [7] P.B.Sarasija and N. Adalin Beatress, Even-Odd harmonious graphs, International journal of Mathematics and soft Computing Vol.5 No.1.(2015),23-29.