ISSN: 2350-0328

International Journal of Advanced Research in Science, Engineering and Technology

Vol. 3, Issue 2 , February 2016

Square Harmonious Graphs

N. Adalin Beatress , P.B.Sarasija
Department of Mathematics, All Saint College of Education, Kaliyakkavilai, Tamil Nadu. Department of Mathematics, Noorul Islam Centre for Higher Education, Kumaracoil, Tamil Nadu

Abstract

In this paper we have introduced a new harmonious labeling called square harmonious labeling. A graph $G(V, E)$ with n vertices and m edges is said to be a square harmonious graph if there exists an injection $f: V(G)$ $\rightarrow\left\{1,2, \ldots, m^{2}+1\right\}$ such that the induced mapping. $f^{*}: E(G) \rightarrow\left\{1,4,9, \ldots, m^{2}\right\}$ defined by $\mathrm{f}^{*}(\mathrm{uv})=(\mathrm{f}(\mathrm{u})+\mathrm{f}(\mathrm{v})) \bmod \left(\mathrm{m}^{2}+1\right)$ is a bijection. the resulting edge labels and vertex labels are distinct. The function f is called a square harmonious labeling of G. Here we prove that path graph, star graph, bistar graph, corona graph $\mathrm{P}_{\mathrm{n}} \odot \mathrm{pk}_{1}$, the graph $\mathrm{C}_{3} @ \mathrm{pk}_{1}$ and the comb graph $\mathrm{P}_{\mathrm{n}} \odot \mathrm{k}_{1}$ are Square harmonious graph.

KEYWORDS: Harmonious labeling, Bistar, Comb graph

I. Introduction

In this paper, we consider finite, undirected, simple graph $G(V, E)$ with n vertices and m edges.
For notations and terminology we follow Bondy and Murthy [1].Harmonious graphs naturally arose in the study by Graham and Sloane [3] of modular versions of additive base problems. Square graceful graphs were introduced in [4]. For a detailed survey on graph labeling we refer to Gallian [2] . We also refer [5,6,7]

Definition : A graph $G(V, E)$ with n vertices and m edges is said to be a square harmonious graph if there exists an injection $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\left\{1,2, \ldots,\left(\mathrm{~m}^{2}+1\right)\right\}$ such that the induced mapping $\mathrm{f} *: \mathrm{E}(\mathrm{G}) \rightarrow\left\{1,4,9, \ldots, \mathrm{~m}^{2}\right\}$ defined by $f^{*}(u v)=(f(u)+f(v)) \bmod \left(m^{2}+1\right)$ is a bijection, the resulting edge labels and vertex labels are distinct. The function f is called a square harmonious labeling of G.

In this paper, we prove that the path graph, star graph, bistar graph, the graph $\mathrm{C}_{3} @ \mathrm{pk}_{1}$ and the comb graph $\mathrm{P}_{\mathrm{n}} \odot \mathrm{k}_{1}$ are square harmonious graphs.

II Main Results

Theorem 2.1. Every path $\mathrm{P}_{\mathrm{n}}(\mathrm{n} \geq 3)$ is a square harmonious graph.

Proof: Let P_{n} be a path with n vertices and $m=(n-1)$ edges. Let $V\left(P_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E\left(P_{n}\right)=\left\{v_{i} v_{i+1}, 1 \leq i \leq n-1\right\}$. Define an injection function $f: V\left(P_{n}\right) \rightarrow\left\{1,2,3, \ldots, m^{2}+1\right\}$ by

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{v}_{1}\right)=3, \mathrm{f}\left(\mathrm{v}_{2}\right)=1, \mathrm{f}\left(\mathrm{v}_{3}\right)=\mathrm{m}^{2}+1, \text { and } \mathrm{f}\left(\mathrm{v}_{4}\right)=\mathrm{m}^{2}, \quad \mathrm{f}\left(\mathrm{v}_{5}\right)=\mathrm{m}^{2}-2 \mathrm{n}+4, \\
& \mathrm{f}\left(\mathrm{v}_{2 \mathrm{i}}\right)=\mathrm{v}_{2 \mathrm{i}-1}+(2 \mathrm{i}-5), 3 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor, \quad \mathrm{f}\left(\mathrm{v}_{2 \mathrm{i}+1}\right)=\mathrm{V}_{2 \mathrm{i}}-2 \mathrm{n}+2 \mathrm{i}, 3 \leq \mathrm{i} \leq\left\lfloor\frac{n-1}{2}\right\rfloor
\end{aligned}
$$

f induces a bijection $f^{*}: E\left(P_{n}\right)=\left\{1,4,9, \ldots,(n-1)^{2}\right\} . f^{*}(u v)=(f(u)+f(v)) \bmod \left(m^{2}+1\right)$.
The edge labels are distinct. Hence every path $\mathrm{P}_{\mathrm{n}}, \mathrm{n} \geq 3$ is a square harmonious graph.

ISSN: 2350-0328

International Journal of Advanced Research in Science, Engineering and Technology

Vol. 3, Issue 2 , February 2016

Theorem 2.2. The star graph $\mathrm{k}_{1, \mathrm{n}}$ is a square harmonious graph for all $\mathrm{n} \geq 2$.
Proof: Let $\mathrm{k}_{1, \mathrm{n}}$ be a star graph with $(\mathrm{n}+1)$ vertices and $\mathrm{m}=\mathrm{n}$ edges.
Let $\mathrm{V}\left(\mathrm{k}_{1, \mathrm{n}}\right)=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}+1}\right\}$.Let $\mathrm{v}_{\mathrm{n}+1}$ be the centre vertex. Let $\mathrm{E}\left(\mathrm{k}_{1, \mathrm{n}}\right)=\left\{\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{n}+1}, 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$.
Define an injective function $\mathrm{f}: \mathrm{V}\left(\mathrm{k}_{1, \mathrm{n}}\right) \rightarrow\left\{1,2, \ldots, \mathrm{~m}^{2}+1\right\}$ by
$\mathrm{f}\left(\mathrm{v}_{\mathrm{n}+1}\right)=2 \mathrm{~m}-3, \quad \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=(\mathrm{m}-\mathrm{i}+1)^{2}-2 \mathrm{~m}+3,1 \leq \mathrm{i} \leq\left\lceil\frac{\mathrm{m}}{2}\right\rceil, \mathrm{f}\left(\mathrm{v}_{\left\lceil\frac{\mathrm{m}}{2}\right\rceil+1}\right)=\mathrm{m}^{2}-2 \mathrm{~m}+5$,
$\mathrm{f}\left(\mathrm{v}_{\left\lceil\frac{\mathrm{m}}{2}\right]+\mathrm{j}}\right)=\mathrm{v}_{\left\lceil\frac{\mathrm{m}}{2}\right]+\mathrm{j}-1}+2 j-1,2 \leq \mathrm{j} \leq\left\lfloor\frac{\mathrm{m}}{2}\right\rfloor . \mathrm{f}^{*}(\mathrm{uv})=(\mathrm{f}(\mathrm{u})+\mathrm{f}(\mathrm{v})) \bmod \left(\mathrm{m}^{2}+1\right)$.
Hence the star graph $\mathrm{K}_{1, \mathrm{n}}$ is a square harmonious graph.

Theorem 2.3. The bistar graph $B_{p, q}$ is a square harmonious labelling graph.
Proof: Let $\mathrm{B}_{\mathrm{p}, \mathrm{q}}$ be a bistar graph with $\mathrm{n}=\mathrm{p}+\mathrm{q}+2$ vertices and $\mathrm{m}=\mathrm{p}+\mathrm{q}+1$ edges.
Let $\mathrm{V}\left(\mathrm{B}_{\mathrm{p}, \mathrm{q}}\right)=\left\{\mathrm{u}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{p}+1, \mathrm{v}_{\mathrm{j}}, 1 \leq \mathrm{j} \leq \mathrm{q}+1\right\}$,
Let $E\left(B_{p, q}\right)=\left\{\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{p}+1}, 1 \leq \mathrm{i} \leq \mathrm{p}, \mathrm{v}_{\mathrm{j}} \mathrm{v}_{\mathrm{q}+1}, 1 \leq \mathrm{j} \leq \mathrm{q}, \mathrm{u}_{\mathrm{p}} \mathrm{v}_{\mathrm{q}}\right\}$.
Define an injection function $\mathrm{f}: \mathrm{V}\left(\mathrm{B}_{\mathrm{p}, \mathrm{q}}\right) \rightarrow\left\{1,2,3, \ldots . .(\mathrm{p}+\mathrm{q}+1)^{2}+1\right\}$ by
$\mathrm{f}\left(\mathrm{u}_{\mathrm{p}+1}\right)=1, \mathrm{f}\left(\mathrm{u}_{1}\right)=3, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{u}_{\mathrm{i}-1}+2 \mathrm{i}+1,2 \leq \mathrm{i} \leq \mathrm{p},\left(\mathrm{v}_{\mathrm{q}+1}\right)=\mathrm{m}^{2}+1, \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=(\mathrm{m}-\mathrm{i}+1)^{2}, 1 \leq \mathrm{i} \leq \mathrm{q}$.
The edge labels are distinct.

Theorem : 2.4. The graph $\mathrm{C}_{3} @ \mathrm{pK}_{1},(\mathrm{p} \geq 2)$ is a square harmonious graph.
Proof : Let u_{1}, u_{2}, u_{3} be the vertices of C_{3} and $v_{1}, v_{2}, \ldots, v_{p}$ be the new vertices.
Let $\mathrm{V}\left(\mathrm{C}_{3} @ \mathrm{pk}_{1}\right)=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{p}}\right\}$. Let $\mathrm{E}\left(\mathrm{C}_{3} @ \mathrm{pk}_{1}\right)=\left\{\mathrm{u}_{1} \mathrm{u}_{2}, \mathrm{u}_{2} \mathrm{u}_{3}, \mathrm{u}_{3} \mathrm{u}_{1}, \mathrm{u}_{1} \mathrm{p}_{1}, \mathrm{u}_{1} \mathrm{p}_{2}, \ldots, \mathrm{u}_{1} \mathrm{p}_{\mathrm{p}}\right\}$.
Here u_{1} is adjacent to $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{p}}$. Define $\mathrm{f}: \mathrm{V}\left(\mathrm{C}_{3} @ \mathrm{pK}_{1}\right) \rightarrow\left\{1,2,3, \ldots,(\mathrm{P}+3)^{2}+1\right\}$ by
$\mathrm{f}\left(\mathrm{u}_{1}\right)=\mathrm{m}^{2}+1, \mathrm{f}\left(\mathrm{u}_{2}\right)=9, \mathrm{f}\left(\mathrm{u}_{3}\right)=16, \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=(\mathrm{m}-\mathrm{i}+1)^{2}, 1 \leq \mathrm{i} \leq \mathrm{p}-2, \mathrm{f}\left(\mathrm{v}_{\mathrm{p}-1}\right)=4, \mathrm{f}\left(\mathrm{v}_{\mathrm{p}}\right)=1$
The induced function $\mathrm{f}^{*}: \mathrm{E}\left(\mathrm{C}_{3} @ \mathrm{pK}_{1}\right) \rightarrow\left\{1,4, \ldots,(\mathrm{P}+3)^{2}\right\}$ is bijective.
Theorem 2.5. The comb graph $P_{n} \odot K_{1,}(n \geq 2)$ is a square harmonious graph.
Proof: Let $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ be the vertices of path P_{n} and $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the n pendant vertices of $u_{1}, u_{2}, \ldots, u_{n}$ respectively. Here $\mathrm{m}=2 \mathrm{n}-1$.

Define an injection $\mathrm{f}: \mathrm{V}\left(\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1}\right) \rightarrow\left\{1,2,3, \ldots . .(2 \mathrm{n}-1)^{2}+1\right\}$ by
$\mathrm{f}\left(\mathrm{u}_{2 \mathrm{i}-1}\right)=\mathrm{i}(2 \mathrm{i}-1), 1 \leq \mathrm{i} \leq\left\lceil\frac{n}{2}\right\rceil, \mathrm{f}\left(\mathrm{u}_{2 \mathrm{i}}\right)=\mathrm{i}(2 \mathrm{i}+1), 1 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rceil, \mathrm{f}\left(\mathrm{v}_{1}\right)=\mathrm{m}^{2}+1$,
$\mathrm{f}\left(\mathrm{v}_{2 \mathrm{i}-1}\right)=(\mathrm{m}-2 \mathrm{i}+3)^{2}-\mathrm{i}(2 \mathrm{i}-1), 2 \leq \mathrm{i} \leq\left\lceil\frac{n}{2}\right\rceil, \mathrm{f}\left(\mathrm{v}_{2 \mathrm{i}}\right)=(\mathrm{m}-2 \mathrm{i}+2)^{2}-\mathrm{i}(2 \mathrm{i}+1), 1 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor$,
The induced function $\mathrm{f}^{*}: \mathrm{E}\left(\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1}\right) \rightarrow\left\{1,4,9, \ldots,(2 \mathrm{n}-1)^{2}\right\}$ is bijective.
Theorem 2.6. The corona graph $\mathrm{P}_{\mathrm{n}} \odot \mathrm{pK}_{1}(\mathrm{n} \geq 2)$ is a square harmonious graph.
Proof: Let $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ be the vertices of the path P_{n} and $u_{j 1}, u_{j 2}, \ldots, u_{j p}$ be the p pendent vertices of the vertex u_{j} of the path P_{n} for $1 \leq j \leq n$. Here $m=m p+n-1$.

International Journal of Advanced Research in Science, Engineering and Technology

Vol. 3, Issue 2 , February 2016

Define an injection f : V $\left(\mathrm{P}_{\mathrm{n}} \odot \mathrm{pK}_{1}\right) \rightarrow\left\{1,2,3, \ldots,(\mathrm{np}+\mathrm{n}-1)^{2}+1\right\}$ by

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{u}_{2 \mathrm{i}-1}\right)=\mathrm{i}(2 \mathrm{i}-1), 1 \leq \mathrm{i} \leq\left\lceil\frac{n}{2}\right\rceil, \quad \mathrm{f}\left(\mathrm{u}_{2 \mathrm{i}}\right)=\mathrm{i}(2 \mathrm{i}+1), 1 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor, \quad \mathrm{f}\left(\mathrm{u}_{11}\right)=\mathrm{m}^{2}+1, \\
& \mathrm{f}\left(\mathrm{u}_{2 \mathrm{i}-1}, \mathrm{j}\right)=[\mathrm{m}-\mathrm{p}(2 \mathrm{i}-2)-\mathrm{j}+2]^{2}-\mathrm{i}(2 \mathrm{i}-1), 2 \leq \mathrm{i} \leq\left\lceil\frac{n}{2}\right\rceil, 1 \leq \mathrm{j} \leq \mathrm{p} . \\
& \mathrm{f}\left(\mathrm{u}_{2 \mathrm{i}, \mathrm{j}}\right)=[\mathrm{m}-\mathrm{p}(2 \mathrm{i}-1)-\mathrm{j}+2]^{2}-\mathrm{i}(2 \mathrm{i}+1), 1 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor, 1 \leq \mathrm{j} \leq \mathrm{p} . \mathrm{u}_{\mathrm{ij}}=(\mathrm{m}-\mathrm{j}+2)^{2}-1,2 \leq \mathrm{j} \leq \mathrm{p} .
\end{aligned}
$$

The induced function $\mathrm{f}^{*}: \mathrm{E}\left(\mathrm{P}_{\mathrm{n}} \odot \mathrm{pK}_{1}\right) \rightarrow\left\{1,4, \ldots . .(\mathrm{np}+\mathrm{n}-1)^{2}\right\}$ is bijective.
Hence the corona graph $\mathrm{P}_{\mathrm{n}} \odot \mathrm{pK}_{1}$ is square harmonious.

References

[1]. J.A.Bondy and U.S.R.Murthy, Graph Theory with Applications, Macmillan, London, 1976.
[2] J.A.Gallian, A dynamic survey of graph labeling, The electronics J. of Combinatorics, 16, 2009.
[3] R.L.,Graham and N.J.A.,Sloane, On additive bases and harmonious graphs, SIAM J. Alg. Discrete Meth., 1(1980) 382-404.
[4] T.Tharmaraj and P.B.Sarasija, Square graceful graphs, International journal of Mathematics and soft Computing Vol. 4 No.1.(2014),129-137
[5] T.Tharmaraj and P.B.Sarasija, Some Square graceful graphs, International journal of Mathematics and soft Computing Vol.5No.1.(2014),119-127.
[6] P. B. Sarasija and R. Binthiya, Even harmonious graphs with applications, International Journal of Computer Science and Information Security, Vol.9, No.7, (2011)161-163.
[7] P.B.Sarasija and N. Adalin Beatress, Even-Odd harmonious graphs, International journal of Mathematics and soft Computing Vol. 5 No.1.(2015),23-29.

