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ABSTRACT: In this paper, we have introduced and investigated two new subclasses of the function class Δ of           

bi-univalent functions defined in the open unit disk, which are associated with the generalized Hypergeometric 

function. Furthermore, we find estimates on the Taylor-Maclaurin coefficient | a2 | and | a3 | for the functions belonging 

to these new classes. 
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I. INTRODUCTION 

Let C(k) denote the class of the functions of the form   

    f(z) = z +  𝑎𝑛𝑧
𝑛∞

𝑛=2  ,         (1)  

which are analytic in the open unit disc  U = {z:  𝑧 < 1}. Further, by S we shall denote the class of all functions in C(k) 

which are univalent in U.  Let f ∈ C (k) given by (1) and  g ∈ C (k) given by  

    g(z) = z +  𝑏𝑛𝑧
𝑛∞

𝑛=2     .           

We define the convolution product (or Hadamard) of f and g by 

   (f*g)(z) = z +   𝑎𝑛𝑏𝑛𝑧
𝑛∞

𝑛=2  = (g*f) (z); (𝑧 ∈ 𝑈).     (2) 

Some of the important and well-investigated subclasses of the univalent function class S include the class S
*
(β) of 

starlike functions of order β in U and the class K(β) of convex functions of order β in U which are defined as 

   S
*
(β) = 𝑓 ∈ 𝑆: 𝑅𝑒  

𝑧𝑓 ′(𝑧)

𝑓(𝑧)
 > 𝛽   0 ≤ 𝛽 < 1  ; 𝑧 ∈ 𝒰       (3) 

and 

   K (β)= f ∈ C k : Re  1 +
zf ′′(z)

f′(z)
 > β  0 ≤ 𝛽 < 1 ; z ∈ 𝒰      (4) 

It readily follows from the definition (3) and (4) that 

𝑓 ∈ 𝐾 𝛽   ⟺ 𝑧𝑓 ′  ∈ 𝑆∗(𝛽). 

It is well known that every function 𝑓 ∈ 𝑆 have inverse f
-1

, defined by  

𝑓−1 𝑓 𝑧  =  𝑧, 𝑧 ∈ 𝑈 

And 

𝑓 𝑓−1 𝑤  =  𝑤 ,  𝑤 <  𝑟0 𝑓 ≥ 1/4, 

Where 

 𝑓−1 𝑤 =  𝑤 −  𝑎2𝑤
2 +   2𝑎2

2 −  𝑎3   𝑤3 −    5𝑎3
3 −  5𝑎2𝑎3 + 𝑎4 𝑤

4 +  …….              (5) 
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A function 𝑓 ∈ 𝐶(𝑘) is said to be bi-univalent in U if both f(z) and f
-1

(z) are univalent in U. Let A denote the class of 

bi-univalent functions in U given by (1). For the complex parameters a, b and c with 𝑐 ≠ 0, −1, −2, ………  the 

generalized Hypergeometric function 2𝑅1(𝑎, 𝑏, 𝑐, 𝑘; 𝑧) is defined as 

 2𝑅1 𝑎, 𝑏, 𝑐, 𝑘; 𝑧 =  
Γ 𝑐 

Γ 𝑏 
 

 𝑎 𝑛  Γ 𝑏+𝑘𝑛 𝑧𝑛

Γ 𝑐+𝑘𝑛   𝑛 !
∞
𝑛=0 = 1 +  

Γ 𝑐 

Γ 𝑏 
 

 𝑎 𝑛−1  Γ 𝑏+𝑘(𝑛−1) 𝑧𝑛−1

Γ 𝑐+𝑘(𝑛−1)   𝑛−1 !
∞
𝑛=0   (6) 

Where Re ( c- 1-b) >0, |z| < 1 and (a)n is the Pochhammer symbol. By using generalized Hypergeometric function 

given by (6) we define a convolution operator Θ(𝑎, 𝑏, 𝑐: 𝑘) as follows: 

 Θ 𝑎, 𝑏, 𝑐: 𝑘 𝑓 𝑧 =  𝑧 2𝑅1 𝑎, 𝑏, 𝑐, 𝑘; 𝑧 ∗  𝑓 𝑧 =  𝑧 +   Υ𝑛𝑎𝑛𝑧
𝑛∞

𝑛=2       ( 𝑧 ∈ 𝑈)  (7) 

Where 

     Υ𝑛 =  
Γ 𝑐  𝑎 𝑛−1  Γ( 𝑏+𝑘 𝑛−1 )

Γ 𝑏  Γ 𝑐+𝑘 𝑛−1   𝑛−1 !
      (8) 

Definition 1:- A function f(z) defined by (1) is said to be in the class MA (a, b, c, k; α, λ) if the following condition 

are satisfied: 

   𝑎𝑟𝑔  
𝑧   Θ   𝑎 ,𝑏 ,𝑐;𝑘 𝑓 𝑧  

′

 1−𝜆 𝑧+ 𝜆  Θ   𝑎 ,𝑏 ,𝑐;𝑘 𝑓(𝑧)
  <  

𝛼𝜋

2
   0 <  𝛼 ≤ 1; 0 ≤  𝜆 ≤ 1;  𝑧 ∈ 𝑈     (9) 

And 

   𝑎𝑟𝑔  
𝑤   Θ   𝑎 ,𝑏 ,𝑐;𝑘 𝑔 𝑤  

′

 1−𝜆 𝑤+ 𝜆  Θ   𝑎 ,𝑏 ,𝑐;𝑘 𝑔(𝑤)
  <  

𝛼𝜋

2
   0 <  𝛼 ≤ 1; 0 ≤  𝜆 ≤ 1;  𝑤 ∈ 𝑈              (10) 

Where the function g is given by  

            𝑓−1 𝑤 =  𝑤 −  𝑎2𝑤
2 +   2𝑎2

2 −  𝑎3  𝑤3 −    5𝑎3
3 −  5𝑎2𝑎3 + 𝑎4 𝑤

4 +  …….                 (11) 

That is, the extension of f
-1 

 to U. 

Definition 2:- A function f(z) defined by (1) is said to be in the class NA (a, b, c, k; β, λ) if the following condition are 

satisfied: 

  𝑅𝑒  
𝑧   Θ   𝑎 ,𝑏 ,𝑐;𝑘 𝑓 𝑧  

′

 1−𝜆 𝑧+ 𝜆  Θ   𝑎 ,𝑏 ,𝑐;𝑘 𝑓(𝑧)
 >  𝛽  0 ≤ 𝛽 < 1; 0 ≤  𝜆 ≤ 1;  𝑧 ∈ 𝑈             (12) 

And 

  𝑅𝑒  
𝑤   Θ   𝑎 ,𝑏 ,𝑐;𝑘 𝑔 𝑤  

′

 1−𝜆 𝑤+ 𝜆  Θ   𝑎 ,𝑏 ,𝑐;𝑘 𝑔(𝑤)
 >  𝛽  0 ≤ 𝛽 < 1; 0 ≤  𝜆 ≤ 1;  𝑤 ∈ 𝑈             (13) 

Where the function g is given by (11) 

In order to prove our main results, we shall need the following lemma 

Lemma 1:- [2]   if   ∈ 𝑃, then | ck | ≤ 2 for each k, where P is the family of all functions h, analytic in U, for which  

𝑅𝑒  𝑧  >  0      𝑧 ∈ 𝑈 , 

where 

 𝑧 =  1 + 𝑐1𝑧 + 𝑐2𝑧
2 + … . .            (𝑧 ∈ 𝑈 ) 

. 

II Coefficient Estimate for the Function class MA (a, b, c, k; α, λ) 

Theorem 1:- Let the function f(z) defined by (1) be in the class  MA (a, b, c, k; α, λ) for 0 <  𝛼 ≤ 1; 0 ≤  𝜆 ≤ 1, then  
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     𝑎2  ≤  
2 𝛼

  2𝛼 𝜆2− 2𝜆 +   1− 𝛼  2− 𝜆 2  Υ2
2+ 2𝛼    3− 𝜆 Υ3

    (14) 

 and  

       𝑎3 ≤  
2 𝛼

 3−𝜆 Υ3
      (15) 

Proof: it follows from (9) and (10) that  

     
𝑧   Θ   𝑎 ,𝑏 ,𝑐;𝑘 𝑓 𝑧  

′

 1−𝜆 𝑧+ 𝜆 Θ   𝑎 ,𝑏 ,𝑐;𝑘 𝑓(𝑧)
=  𝑝 𝑧  𝛼     (16) 

And 

      
𝑤   Θ   𝑎 ,𝑏 ,𝑐;𝑘 𝑔 𝑤  

′

 1−𝜆 𝑤+ 𝜆 Θ   𝑎 ,𝑏 ,𝑐;𝑘 𝑔(𝑤)
=  𝑞 𝑤  𝛼    (17) 

Where p(z) and q(w) have the following forms: 

     𝑝 𝑧 =  1 + 𝑝1𝑧 + 𝑝2𝑧
2 +  ……… ..     (18) 

And  

     𝑞 𝑤 =  1 + 𝑞1𝑤 + 𝑞2𝑤
2 + …………     (19) 

Respectively. Now, equating the coefficient in (16) and (17), we get 

       2 − 𝜆 Υ2  𝑎2 =  𝛼 𝑝1                  (20) 

    𝜆2 −  2𝜆 Υ2
2  𝑎2

2 +   3 − 𝜆 Υ3  𝑎3 =  
1

2
 𝛼 𝛼 − 1 𝑝1

2 +  2𝛼 𝑝2      (21) 

     − 2 − 𝜆 Υ2𝑎2 =  𝛼 𝑞1        (22) 

And 

    𝜆2 −  2𝜆 Υ2
2  𝑎2

2 +   3 − 𝜆 Υ3    2𝑎2
2 −  𝑎3 =  

1

2
 𝛼 𝛼 − 1 𝑞1

2 +  2𝛼 𝑞2   (23) 

From (20) and (22), we find that 

     𝑎2 =  
𝛼  𝑝1

 2−𝜆  Υ2
=  

− 𝛼  𝑞1

 2−𝜆 Υ2
     (24) 

Which implies 

      𝑝1 =  − 𝑞1     (25) 

Adding (21) and (23), we obtain 

   2 𝜆2 −  2𝜆 Υ2
2 +  2 3 − 𝜆 Υ3  𝑎2

2 =  
𝛼(𝛼−1)

2
  𝑝1

2 + 𝑞1
2  +  𝛼 (𝑝2 +  𝑞2)  (26) 

Substituting the values from (24) and (26) into (26), we get 

    𝑝1
2 =  

 2−𝜆 2  Γ2
2  ( 𝑝2+ 𝑞2)

 2𝛼 𝜆2− 2𝜆 +  1− 𝛼  2−𝜆 2    Υ2
2+ 2𝛼   3−𝜆 Υ3

    (27) 

Applying Lemma 1 for the coefficient  p2 and q2, we immediately have  

     𝑝1  ≤   
2𝛼

  2𝛼 𝜆2− 2𝜆 +  1− 𝛼  2−𝜆 2    Υ2
2+ 2𝛼   3−𝜆 Υ3

   (28) 

Substituting (28) in (24), we get 
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     𝑎2  ≤  
2 𝛼

  2𝛼 𝜆2− 2𝜆 +   1− 𝛼  2− 𝜆 2  Υ2
2+ 2𝛼    3− 𝜆 Υ3

 

This gives the bound on |a2| as asserted in (14). Next, in order to find that bound on |a3|, by subtracting (23) fro (21), we 

get 

   2 3 − 𝜆 Υ3𝑎3 −  2 3 −  𝜆 Υ3𝑎2
2 =  𝛼   𝑝2 −  𝑞2 + 

𝛼(𝛼−1)

2
 ( 𝑝1

2 −  𝑞1
2)  (29) 

It follows from (24), (25) and (29) that 

     2 3 − 𝜆 Υ3a3 =   
2 3−λ α2  Υ3

 2𝛼 𝜆2− 2𝜆 +  1− 𝛼  2−𝜆 2    Υ2
2+ 2𝛼   3−𝜆 Υ3

+ α  p2 +   
2 3−λ α2  Υ3

 2𝛼 𝜆2− 2𝜆 +  1− 𝛼  2−𝜆 2    Υ2
2+ 2𝛼   3−𝜆 Υ3

− α  q2  

Applying lemma 1 once again for the coefficient p2 and q2 , we readily get 

       𝑎3 ≤  
2 𝛼

 3−𝜆 Υ3
        

This completes the proof of the theorem.            

□ 

Putting λ = 0 in theorem 1, we have the following Corollary. 

Corollary 1:- Let the function f (z) defined by (1) be in the class MA (a, b, c, k; α) (0 < α ≤ 1), then  

      𝑎2 ≤  𝛼  
2

2 1−𝛼 Υ2
2+ 3𝛼  Υ3

   

And 

      𝑎3 ≤  
2 𝛼

3 Υ3
  

Putting  λ = 0, a=c and b =1 in Theorem 1, we have the following Corollary 

Corollary 2:- Let the function f (z) defined by (1) be in the class MA (a, k; α) (0 < α ≤ 1), then  

      𝑎2 ≤  𝛼  
2

2+𝛼
   

And 

      𝑎3 ≤  
2 𝛼

3 
  

The bound on |a3| in Corollary 2 provides improvement over the result of Srivastava et. Al. [3]. 

Putting  λ = 1 in Theorem 1, we have the following Corollary 

Corollary 3:- Let the function f (z) defined by (1) be in the class MA (a, b, c,  k; α, 1) (0 < α ≤ 1), then  

      𝑎2 ≤  𝛼  
2

 1−3𝛼 Υ2
2+ 4𝛼  Υ3

   

And 

      𝑎3 ≤  
 𝛼

Υ3
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III Coefficient Estimate for the Function class NA (a, b, c, k; β, λ) 

Theorem 2:- Let the function f(z) defined by (1) be in the class  NA (a, b, c, k; β, λ) for 0 ≤ 𝛽 <  1; 0 ≤  𝜆 ≤ 1, then  

      𝑎2  ≤   
2(1−𝛽)

 𝜆2−2𝜆 Υ2
2  + 3−λ Υ3

     (30) 

 and  

      𝑎3 ≤  
2 (1−𝛽)

 3−𝜆 Υ3
       (31) 

Proof: it follows from (12) and (13) that  

     
𝑧   Θ   𝑎 ,𝑏 ,𝑐;𝑘 𝑓 𝑧  

′

 1−𝜆 𝑧+ 𝜆 Θ   𝑎 ,𝑏 ,𝑐;𝑘 𝑓(𝑧)
=  𝛽 +  1 − 𝛽 𝑝(𝑧)   (32) 

And 

     
𝑤   Θ   𝑎 ,𝑏 ,𝑐;𝑘 𝑔 𝑤  

′

 1−𝜆 𝑤+ 𝜆 Θ   𝑎 ,𝑏 ,𝑐;𝑘 𝑔(𝑤)
=  𝛽 +  1 − 𝛽 𝑞(𝑤)   (33) 

Where p(z) and q(w) have the forms (18) and (19) respectively. Equating the coefficient in (32) and (33), we get 

       2 − 𝜆 Υ2  𝑎2 =   1 − 𝛽  𝑝1   (34) 

    𝜆2 −  2𝜆 Υ2
2  𝑎2

2 +   3 − 𝜆 Υ3  𝑎3 =   1 − 𝛽  𝑝2                      (35) 

     − 2 − 𝜆 Υ2𝑎2 =   1 − 𝛽  𝑞1       (36) 

And 

    𝜆2 −  2𝜆 Υ2
2  𝑎2

2 +   3 − 𝜆 Υ3    2𝑎2
2 −  𝑎3 =   1 − 𝛽  𝑞2     (37) 

From (34) and (36), we find that 

     𝑎2 =  
 1−𝛽  𝑝1

 2−𝜆  Υ2
=  

−  1−𝛽  𝑞1

 2−𝜆 Υ2
     (38) 

Which implies 

      𝑝1 =  − 𝑞1     (39) 

From (35) and (37), we obtain 

   2 𝜆2 −  2𝜆 Υ2
2 +  2 3 − 𝜆 Υ3  𝑎2

2 =   1 − 𝛽  (𝑝2 +  𝑞2)    (40) 

Also by using (38) and (40), we get 

    𝑝1
2 =  

 2−𝜆 2  Γ2
2  ( 𝑝2+ 𝑞2)

  𝜆2− 2𝜆 2   Υ2
2+ 2𝛼   3−𝜆 Υ3  1−𝛽 

     (41) 

Applying Lemma 1 in (41) appropriately, we get  

     𝑝1  ≤    2 − 𝜆  Υ2 
2

  𝜆2− 2𝜆 2   Υ2
2+ 2𝛼   3−𝜆 Υ3  1−𝛽 

   (42) 

Again by applying lemma 1 to (38) and using (42), we immediately find that 

     𝑎2  ≤   
2(1−𝛽)

 𝜆2− 2𝜆 2   Υ2
2+ 2𝛼   3−𝜆 Υ3

 

This gives the bound on |a2| as asserted in (30). Next, in order to find that bound on |a3|, by subtracting (37) fro (35), we 

get 
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   2 3 − 𝜆 Υ3𝑎3 −  2 3 −  𝜆 Υ3𝑎2
2 = (1 − 𝛽)  𝑝2 −  𝑞2    (43) 

It follows from (40) and (43) that 

     2 3 − 𝜆 Υ3a3 =   
2 3−λ  Υ3 (1−β)

 𝜆2− 2𝜆  Υ2
2+   3−𝜆 Υ3

  p2 +   
 𝜆2− 2𝜆  Υ2

2  (1−β)

 𝜆2− 2𝜆  Υ2
2+   3−𝜆 Υ3

  q2  

Applying lemma 1 once again for the coefficient p2 and q2 , we readily get 

       𝑎3 ≤  
2 (1−β)

 3−𝜆 Υ3
        

This completes the proof of the theorem.            

□ 

Putting λ = 0 in theorem 2, we have the following Corollary. 

Corollary 4:- Let the function f (z) defined by (1) be in the class NA (a, b, c, k; β) (0 ≤ β < 1), then  

      𝑎2 ≤  𝛼 
2 (1−β)

 3 Υ3
    

And 

      𝑎3 ≤  
2 (1−β)

3 Υ3
   

Putting  λ = 0, a=c and b =1 in Theorem 2, we have the following Corollary 

Corollary 5:- Let the function f (z) defined by (1) be in the class NA (a, k; β) (0 ≤ β < 1), then  

      𝑎2 ≤  𝛼  
2 (1−𝛽)

2 Υ3− Υ2
2   

And 

      𝑎3 ≤  
(1−β)

Υ3
  

The bound on |a3| in Corollary 5 provides improvement over the result of Srivastava et. Al. [3]. 
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