

### International Journal of Advanced Research in Science, Engineering and Technology

Vol. 3, Issue 2 , February 2016

# Finitely Quasi Injective and Quasi Finitely Injective S-systems Over Monoids

### Dr.ShaymaaAmer(PhD. in Math. especially in Algebra)

Department of Mathematics, College of Basic Education, Mustansiriyah University, Baghdad, Iraq.

**ABSTRACT:** The notion of quasiinjectivity relative to a class of finitely generated subsystems namely finitely quasi injective and quasi finitely injective systems over monoids are introduced and studied which are proper generalizations of quasi injective systems. Several properties of these kind of generalizations are discussed. Conditions under which subsystems of finitely quasi injective system inherit this property. Characterizations of finitely quasi injective and quasi finitely injective systems over monoids are considered. The relationship between the classes of finitely quasi injective with other classes of injectivity are studied. As a consequence, conditions to versus these classes are shown.

**KEYWORDS:** Finitely quasi-injective systems, Quasi finitely injective systems, Finitely injective systems, Finitely generated systems, Weakly injective systems.

#### **I- INTRODUCTION AND PRELIMINARIES**

Throughout this paper , the basic S-system is a unitary right S-system with zero which is consists of a monoid with zero , a non-empty set  $M_s$  with a function  $f: M \times S \to M$  such that  $f(m,s) \mapsto ms$  and the following properties hold : (1)  $m \cdot 1=m$  (2) m(st) = (ms)t for all  $m \in M$  and  $s, t \in S$ , where 1 is the identity element of S. An element  $\Theta \in M_s$  is called fixed of  $M_s$  if  $\Theta s=\Theta$  for all  $s \in S$  [4]. An S-system  $M_s$  is centered if it has a fixed element  $\Theta$  necessary unique such that  $m0 = \Theta$  for all  $m \in M_s$ , where 0 is the zero element of S and  $\Theta$  is the zero of M [8]. A subsystem N of an S-system  $M_s$  is a non-empty subset of M such that  $xs \in N$  for all  $x \in N$  and  $s \in S[8]$ . Let g be a function from an S-system  $A_s$  into an S-system  $B_s$ , then g will be called an S-homomorphism, if for any  $a \in A_s$  and  $s \in S$ , we have g(as) =g(a)s [3]. An S-congruence  $\rho$  on a right S-system  $M_s$  is an equivalence relation on  $M_s$  such that whenever (a,b)  $\in \rho$ , then (as, bs)  $\in \rho$  for all  $s \in S$  [6]. The identity S-congruence on  $M_s$  will be denoted by  $I_M$  such that (a,b)  $\in I_M$  if and only if a = b [6].

The authors defined that if for every  $x \in M_s$ , there is an S-homomorphism  $f: M_s \rightarrow xS$  such that  $x = f(x_1)$  for  $x_1 \in M_s$ , then an S-system  $M_s$  is called principal self-generator [1]. A subset A of an S-system  $M_s$  is called a set of generating elements or a generating set of  $M_s$  if every element  $m \in M_s$  can be presented as m = as for some  $a \in A$ ,  $s \in S$ . Then, an S-system  $M_s$  is finitely generated if  $M_s = \langle A \rangle$  for some A,  $|A| < \infty$ , where  $\langle A \rangle$  is the subsystem of  $M_s$  generated by A[7, p.63]. An S-system N<sub>s</sub> is called  $M_s$ -generated, where  $M_s$  be an S-system if there exists an S-epimorphism  $\alpha : M_s^{(0)} \rightarrow N_s$  for some index set I. If I is finite, then N is called finitely  $M_s$ -generated of  $M_s$  [2]. An S-system  $B_s$  is a retract of an S-system  $A_s$  if and only if there exists a subsystem W of  $A_s$  and epimorphism  $f : A_s \rightarrow W$  such that  $B_s \cong W$  and f(w) = w for every  $w \in W$  [7, P.84]. An S-homomorphism f which maps an S-system  $M_s$  into an S-system  $N_s$  is said to be split if there exists S-homomorphism g which maps  $N_s$  into  $M_s$  such that  $fg=1_N$  [6].

Let  $A_s$ ,  $M_s$  be two S-systems .  $A_s$  is called  $M_s$ -injective if given an S- monomorphism  $\alpha:N\to M_s$  where N is a subsystem of  $M_s$  and every S-homomorphism  $\beta:N\to A_s$ , can be extended to an S-homomorphism  $\sigma:M_s\to A_s$  [10] . An S-system  $A_s$  is injective if and only if it is  $M_s$ -injective for all S-systems  $M_s$ . An S-system  $A_s$  is quasi injective if and only if it is A\_s-injective S-systems have been studied by Lopez and Luedeman [8] . It is clear that every injective system is quasi injective but the converse is not true in general see [8] . An S-system  $A_s$  is weakly injective if it is injective to all embeddings of right ideals into  $S_s$  [7,p.205] .



### International Journal of Advanced Research in Science, Engineering and Technology

### Vol. 3, Issue 2 , February 2016

In this work, we find weak form of quasi injectivity called finitely quasi injective and quasi finitely injective systems over monoids . Also , we give some interesting results on these systems .

### **II-FINITELY QUASI INJECTIVE SYSTEMS OVER MONOIDS**

In [9], V.S.Ramamurthi define finitely injective module which motivate us to define finitely injective relative to S-system as follows :

**Definition (2.1) :** Let  $M_s$  and  $N_s$  be two S-systems .  $M_s$  is called finitely  $N_s$ -injective (for short F- $N_s$ -injective) if every homomorphism from a finitely generated subsystem of  $N_s$  to  $M_s$  extends to homomorphism of  $N_s$  into  $M_s$  . An S-system  $M_s$  is called finitely quasi injective(for short FQ-injective) if  $M_s$  is F-M-injective system .

#### Example and Remarks(2.2) :

(1) Every quasi injective systems is FQ-injective systems , but the converse is not true in general as the following example shows ; let S be the monoid {1,a,b,0} with  $ab = a^2 = a$  and  $ba = b^2 = b$ . Now , consider S as a right S-system over itself , then it is easy to check that  $S_s$  is FQ- injective . But , when we take  $N=\{a,0\}$  be a subsystem of  $S_s$  and f be S-homomorphism defined by  $f(x) = \begin{cases} 0 & \text{if } x = 0 \\ b & \text{if } x = a \end{cases}$ , then this S-homomorphism cannot be extended to S-endomorphism of  $S_s$ . If not , that is there exists S-homomorphism g:  $S_s \to S_s$  such that g(x) = f(x), for each  $x \in N$ , which is the trivial S-homomorphism , since other extension is not S-homomorphism . Then , b = f(a) = g(a) = a which implies that b = a, and this is a contradiction .

(2) Isomorphic system to F-M-injective is F-M-injective for any S-system M. In particular, isomorphic system to FQ-injective is FQ-injective.

(3) Let  $N_1$  and  $N_2$  be two S-systems such that  $N_1 \cong N_2$ . If  $M_s$  is F-N<sub>1</sub>-injective, then  $M_s$  is F-N<sub>2</sub>-injective.

In the following theorem , we give characterizations of FQ- injective S-systems :

**Theorem (2.3) :** The following statements are equivalent for S-system M<sub>s</sub> with

 $T = End_{s}(M_{s}):$ 

(1) M<sub>s</sub> is FQ-injective .

(2)  $\gamma_{S_n}(x) \subseteq \gamma_{S_n}(y)$ , where x,  $y \in M^n$ ,  $n \in Z^+$  implies that  $Ty \subseteq Tx$ .

(3) If  $x_i \in M_s$ , i = 1, 2, ..., n and  $\alpha : \dot{U}_{i=1}^n x_i S \to M_s$  is S-homomorphism , then there exists S-homomorphism extends  $\alpha$ .

**Proof:** Put  $M^n = M^{1 \times n}$  and  $S_n = S_{n \times 1}$ .

 $(1 \rightarrow 2) \text{ Let } \gamma_{S_n}(x) = \{ (s,s') \in S_n \mid xs = xs', \text{ where } s = \begin{pmatrix} S_1 \\ \vdots \\ \vdots \\ S_n \end{pmatrix} \text{ and } s' = \begin{pmatrix} S_1' \\ \vdots \\ \vdots \\ S_n' \end{pmatrix} \} \text{ and } \gamma_{S_n}(x) = \gamma_{S_n}(y) \text{ such that } x = (x_1, \dots, x_n) \}$ 

 $\begin{array}{l} x_n) \;,\; y=(\;y_1\;,\;\ldots\;,\;y_n) \in \; M^n \;\;,\;\; n \in Z^+. \; \text{Then},\; \alpha : \dot{U}_{i=1}^n x_i S \to M_s \text{is defined by } \alpha(xs)=ys \;. \; \text{It is obvious that } \alpha \text{ is well-defined and S-homomorphism} \;. \; \text{Since } M_s \; \text{is FQ-injective} \;, \; \text{so there exists } \sigma \in T \; \text{such that } \sigma \; \text{extends } \alpha \;, \; \text{then } y_i=\alpha(x_i)=\sigma(x_i) \;, \; \text{where } i=1,2,\ldots,n \;, \; \text{so } y=\sigma x \; \text{ and then } Ty \subseteq Tx \;. \end{array}$ 

 $\begin{array}{l} (2 \rightarrow 3) \text{ As } \alpha \text{ is S-homomorphism and } \beta \text{ is S-monomorphism , so we have } \gamma_{s_n}(\beta(x_1), \ldots, \beta(x_n)) \subseteq \gamma_{s_n}(\alpha(x_1), \ldots, \alpha(x_n)) \\ \text{ by } (2) \text{ , we have } T\alpha(x) \subseteq T\beta(x) \text{ , where } \alpha(x) = (\alpha(x_1), \ldots, \alpha(x_n)) = \alpha(x_1, \ldots, x_n) \text{ and } \beta(x) = (\beta(x_1), \ldots, \beta(x_n)) = \beta(x_1, \ldots, x_n) \text{ . Thus there exists } \sigma \in T \text{ such that } (\alpha(x_1), \ldots, \alpha(x_n)) = \sigma(\beta(x_1), \ldots, \beta(x_n)) \text{ , so} \alpha(x) = \sigma\beta(x) \text{ . Therefore } \alpha = \sigma\beta \text{ .} \end{array}$ 

 $(3\rightarrow 1)$  By definition of FQ-injective system .



## International Journal of Advanced Research in Science, Engineering and Technology

ISSN: 2350-0328

#### Vol. 3, Issue 2, February 2016

**Corollary** (2.4) : The following statements are equivalent for a monoid S :

(1) S is a right F-injective. (2)  $\gamma_{S_n}(\alpha) \subseteq \gamma_{S_n}(\beta)$ , where  $\alpha, \beta \in S^n, n \in Z^+$  implies that  $S\beta \subseteq S\alpha$ . (3) If  $a_i \in S$ , i = 1, 2, ..., n and  $\alpha : \dot{U}_{i=1}^n a_i S \to S$  is S-homomorphism, then there exists S-homomorphism b belong to S which is extends  $\alpha$ .

The following proposition gives a condition under which subsystem of FQ-injective inherit this property . Before this , we need the following concept :

Recall that a subsystem N of S-system  $M_s$  is fully invariant of  $M_s$  if  $f(N) \subseteq N$ , for all  $f \in End_s(M_s)$  [5]. An S-system is called duo if each subsystem of it is fully invariant.

Proposition (2.5): Every fully invariant subsystem of FQ-injective system is FQ-injective .

**Proof:** Let  $M_s$  be FQ-injective system and N be a fully invariant subsystem of  $M_s$ . Let X be any finitely generated subsystem of N and f be S-homomorphism from X into N. Since  $M_s$  is FQ-injective system, so there exists an S-endomorphism g of  $M_s$  such that  $goi_Noi_X = i_Nof$ , where  $i_X$  and  $i_N$  are the inclusion maps of X into N and N into  $M_s$  respectively. As N is fully invariant in  $M_s$ , so  $g(N) \subseteq N$ . Put  $g|_N = h$ , then  $\forall x \in X$ , we have  $(hoi_X)(x) = g(x) = (goi_Noi_X)(x) = (i_Nof)(x) = f(x)$ . Therefore N is FQ-injective system.

Recall that an S-system  $M_s$  is called multiplication if every subsystem of  $M_s$  is of the form MI for some right ideal I of S. It is clear that every subsystem of multiplication system is fully invariant [5].

Corollary (2.6): If M<sub>s</sub> is FQ-injective duo (multiplication) S-system, then every subsystem of M<sub>s</sub> is FQ-injective.

**Proposition** (2.7): Let  $M_s$  and  $N_s$  be two S-systems and N' a subsystem of  $N_s$ . If  $M_s$  is F-N-injective, then :

(1) Every retract of  $M_s$  is F-N-injective.

(2)  $M_s$  is F-N<sup>/</sup>-injective system.

**Proof :**(1) Let  $M_s = M_1 \bigoplus M_2$ , and K be finitely generated subsystem of N and f be S-homomorphism of K into  $M_1$ . Since  $M_s$  is F-N<sub>s</sub>-injective, so (j<sub>1</sub>of) where j<sub>1</sub> is injection of  $M_1$  into  $M_s$  extends to S-homomorphism g of N<sub>s</sub> into  $M_s$  such that  $goi_K = j_1of$ . Put  $g' (= \pi_1g) : N_s \to M_1$ , where  $\pi_1$  be the projection map of  $M_s$  into  $M_1$ , then  $g'oi_K = \pi_1 ogoi_K = \pi_1 oj_1 of = I_{M_1} of = f$ . Thus f extends to S-homomorphism g' and  $M_1$  is F-N-injective system.

(2) It is obvious.

The following corollaries is immediately from above proposition :

Corollary (2.8): Retract of FQ-injective system is FQ-injective .

Corollary (2.9): Let N be any subsystem of S-system M<sub>s</sub>. If N is F-M-injective , then N is finitely injective .

**Proposition** (2.10) : Let  $M_s$  and  $N_s$  be two S-systems . Let  $N_s$  be finitely generated subsystem of  $M_s$ . Then  $N_s$  is F-M-injective if and only if every monomorphism  $f: N_s \to M_s$  split .

**Proof:** Assume that  $N_s$  is F-M<sub>s</sub>-injective system and  $f: N_s \to M_s$  be monomorphism , then by F-M<sub>s</sub>-injective of  $N_s$ , there exists an S-homomorphism  $g: M_s \to N_s$  such that  $gof = I_N$ . Since  $N_s \cong f(N_s)$ , so  $f(N_s)$  is a retract of  $M_s$ . Conversely, assume that A is finitely generated subsystem of  $M_s$ . Then, by assumption the monomorphism (inclusion map)  $i_A$  of A into  $M_s$  split, this means there exists  $\omega: M_s \to A$  such that  $\omega oi_A = I_A$ . Now, for S-homomorphism f: A  $\to N_s$ , set  $g (= fo\omega): M_s \to N_s$  which implies that  $goi_A = f \circ \omega oi_A = f$ . Thus  $N_s$  is F-M-injective system.



### International Journal of Advanced Research in Science, Engineering and Technology

Vol. 3, Issue 2 , February 2016

**Corollary (2.11) :** Let  $N_s$  be a finitely generated subsystem of an S-system  $M_s$ . If  $N_s$  is F-M<sub>s</sub>-injective system , then  $N_s$  is a retract of  $M_s$ .

**Corollary** (2.12) : Let  $M_s$  be FQ-injective S-system . Then , every finitely generated subsystem of  $M_s$  which is isomorphic to  $M_s$  is a retract of  $M_s$ .

**Definition** (2.13) : An S-system  $M_s$  is called  $FC_2$  if every finitely generated subsystem of  $M_s$  that is isomorphic to a retract of  $M_s$  is itself a retract of  $M_s$ .

**Theorem (2.14) :** Every FQ-injective system satisfies FC<sub>2</sub>.

**Proof:** Let  $M_s$  be FQ-injective S-system and A be a retract of  $M_s$  with  $A \cong B$ , where B is finitely generated subsystem of  $M_s$ . Let f be S-isomorphism from B into A, then f is S-monomorphism from B into  $M_s$ . Since A is a retract of  $M_s$ , so by corollary(2.8) A is F-M-injective system. By example and remarks (2.2)(2), since  $A \cong B$ , so B is F-M-injective system. Then, by proposition (2.10) f is split and by corollary (2.9) B is a retract of  $M_s$  and so  $M_s$  satisfies  $FC_2 -$  condition.

**Proposition(2.15)** : Let  $M_s$  be an S-system and  $\{N_i\}_{i \in I}$  be a family of S-systems , where I is finite index set . Then  $\Pi_{i \in I} N_i$  is finitely M-injective if and only if for each  $i \in I$ ,  $N_i$  is finitely M-injective system .

**Proof:**  $\Rightarrow$ ) Put  $N_s = \prod_{i \in I} N_i$ , assume that  $N_s$  is F-M-injective S-system and A is a finitely generated subsystem of  $M_s$ . Let f be an S-homomorphism of A into  $N_i$ . Since N is F-M-injective, so there exists S-homomorphism g :  $M_s \rightarrow N_s$  such that  $goi_A = j_i of$ , where  $j_i$  is the injection map of  $N_i$  into  $N_s$  and  $i_A$  is the inclusion map of A into  $M_s$ . Now, let  $\pi_i$  be the projection map of N onto  $N_i$ . Put

 $h(=\pi_i \circ g): M_s \to N_i$ , then  $\forall a \in A$ ,  $(hoi_A)(a) = (\pi_i \circ goi_A)(a) = (\pi_i \circ j_i \circ f)(a) = f(a)$ . Thus  $N_i$  is F-M-injective system.

 $\Leftarrow) Assume that N_i is F-M-injective for each i \in I . Let A be finitely generated subsystem of M_s and f be an S-homomorphism of A into N_s. Since N_i is F-M-injective S-system, so there exists S-homomorphism <math>\beta_i : M_s \to N_i$  such that  $\beta_i oi_A = \pi_i of$ , where  $i_A$  be the inclusion map of A into M\_s. Now, define an S-homomorphism  $\beta (= j_i o \beta_i) : M_s \to N_s$ , then  $\beta oi_A = j_i o \beta_i oi_A = j_i o \pi_i of = f$ . Therefore, N<sub>s</sub> is F-M-injective system.

**Corollary (2.16) :** Let  $M_s$  and  $N_i$  be S-systems , where  $i \in I$  and I is finite index set . If  $\bigoplus_{i \in I} N_i$  is F-M-injective for all  $i \in I$ , then  $N_i$  is F-M-injective .

The following proposition give another characterization of FQ-injective S-system :

**Proposition (2.17):** If  $M_s$  is FQ-injective S-system and  $T = End(M_s)$ , then TA = TB for each isomorphic subsystems A and B of  $M_s$ .

**Proof :** By assumption there exists an S-isomorphism  $\alpha : A \to B$ , let  $b \in B$  so there exists  $a \in A$  such that  $\alpha(a) = b$ . For s,t $\in S$ , if as = at and since  $\alpha$  is well-defined, so  $\alpha(as) = \alpha(at)$ , then bs = bt, which implies that  $\gamma_s(a) \subseteq \gamma_s(b)$ . Since  $M_s$  is FQ-injective, then by theorem (2.3), Tb  $\subseteq$  Ta and hence Tb  $\subseteq$  TA  $\forall b \in B$ . Thus TB  $\subseteq$  TA. Similarly, we can prove TA  $\subseteq$  TB. Therefore TA = TB.

As an immediate consequence of above proposition, we have the following result :

Corollary (2.18): If S is F-injective monoid and A, B are two isomorphic ideal of S, then A = B.

Recall that two S-systems  $M_s$  and  $N_s$  are mutually finitely injective if  $M_s$  is finitely  $N_s\text{-injective}$  and  $N_s$  is finitely M-injective .

**Theorem (2.19) :** If  $M_1 \oplus M_2$  is FQ-injective system , then  $M_1$  and  $M_2$  are mutually F-injective system .



### International Journal of Advanced Research in Science, Engineering and Technology

### Vol. 3, Issue 2 , February 2016

**Proof :** Let  $M_1 \oplus M_2$  be FQ-injective system . Let X be any finitely generated subsystem of  $M_2$  and f be S-homomorphism from X into  $M_1$ . Put  $\alpha(=j_i \circ f): X \to M_1 \oplus M_2$ , where  $j_i$  is the injection map of  $M_1$  into  $M_1 \oplus M_2$ . By proposition (2.7)(2) ,  $M_1 \oplus M_2$  is F- $M_2$ -injective , so  $\alpha$  extends to S-homomorphism  $g: M_2 \to M_1 \oplus M_2$  . If  $\pi_1: M_1 \oplus M_2 \to M_1$  is the natural projection , then  $h(=\pi_1 g): M_2 \to M_1$  is S-homomorphism extending f. Consequently ,  $M_1$  is F- $M_2$ -injective system .

The proof of the following corollary is immediately from above theorem and proposition (2.7) :

**Corollary** (2.20) : If  $\bigoplus_{i \in I} M_i$  is FQ-injective system, then  $M_j$  is F-M<sub>K</sub>-injective for all distinct j,  $k \in I$ .

**Definition** (2.21): An S-system  $M_s$  is called quasi finitely injective (for short QF-injective) if every S-homomorphism from a finitely  $M_s$ -generated subsystem of  $M_s$  to  $M_s$  extends to an S-endomorphism of  $M_s$ .

**Proposition (2.22) :** The following statements are equivalent for S-system M<sub>s</sub> with  $T = End_s(M_s)$ : (1) M<sub>s</sub> is QF-injective . (2)  $\gamma_{M_n}(\alpha) \subseteq \gamma_{M_n}(\beta)$ , where  $\alpha$ ,  $\beta \in T^n$ ,  $n \in Z^+$  implies that  $T\beta \subseteq T\alpha$ .

**Proof :**  $(1 \rightarrow 2)$  Assume that  $\gamma_{M_n}(\alpha) \subseteq \gamma_{M_n}(\beta)$  such that  $\alpha, \beta \in T^n$ ,  $n \in Z^+$ . Write  $\alpha = (\alpha_1, \ldots, \alpha_n)$ ,  $\beta = (\beta_1, \ldots, \beta_n)$ , then the mapping  $f : \dot{U}_{i=1}^n \alpha_i M \rightarrow M_s$  defined by  $f(\alpha_i m) = \beta_i m$  is well-defined and S-homomorphism, for this let  $\alpha_i m = \alpha_i k \forall i \in I$ , so  $(m, k) \in \gamma_{M_n}(\alpha) \subseteq \gamma_{M_n}(\beta)$  which implies that  $\beta_i m = \beta_i k$  and then  $f(\alpha_i m) = f(\alpha_i k)$ . Also, for S-homomorphism, we have  $f(\alpha_i m) = \beta_i ms = f(\alpha_i ms)$ . Since  $M_s$  is QF-injective, so there exists S-endomorphism g of  $M_s$  which extends f, then  $\beta_i m = g(\alpha_i m) = f(\alpha_i m)$ ,  $\forall i \in I$  and  $m \in M_s$ . Thus  $\beta = g\alpha$  and so  $T\beta \subseteq T\alpha$ .  $(2 \rightarrow 1)$  Assume that  $f : \dot{U}_{i=1}^n \alpha_i M \rightarrow M_s$  be homomorphism. Put  $\alpha = (\alpha_1, \ldots, \alpha_n)$ ,  $\beta = (f \beta_1, \ldots, f \beta_n)$ , then it is easy

 $(2 \rightarrow 1)$  Assume that  $f: \bigcup_{i=1}^{n} \alpha_i M \rightarrow M_s$  be homomorphism. Put  $\alpha = (\alpha_1, \dots, \alpha_n)$ ,  $\beta = (f \beta_1, \dots, f \beta_n)$ , then it is easy matter to check that  $\gamma_{M_n}(\alpha) \subseteq \gamma_{M_n}(\beta)$ . By(2), we have  $\beta \in T\alpha$ , so there exists  $\sigma \in T$  such that  $\beta = \sigma\alpha$ . Since  $f(\alpha(M)) = \beta(M) = \sigma\alpha(M)$ . Thus  $\sigma$  extends f.

The following proposition give a condition under which endomorphism of S-system is QF-injective :

**Proposition** (2.23) : Given an S-system  $M_s$  with  $T = End_s(M_s)$ . Let  $\alpha$ ,  $\beta$  denote elements of T. Assume that  $M_s \times M_s$  generates ker $\alpha$  for each  $\alpha \in T$ . Then T is right QF-injective if and only if ker $\alpha \subseteq ker\beta$  implies that  $\beta \in T\alpha$ .

**Proof :** If T is right QF-injective , then the condition holds for any  $M_s$ . Conversely , if  $\beta \in \ell_T(\ker \alpha) = T\alpha$ , so there exists  $\sigma \in T$  such that  $\beta = \sigma \alpha$ . The proof is complete when we prove  $\ker \alpha \subseteq \ker \beta$ . Since  $M_s \times M_s$  generates  $\ker \alpha$ , so there exists S-epimorphism  $f_i : M_s \times M_s \rightarrow \ker \alpha$  such that  $\forall (x,y) \in \ker \alpha$ , we have  $\alpha(x) = \alpha(y)$ , and then there exists  $(m, k) \in M_s \times M_s$ , where  $x = f_i m$ ,  $y = f_i k$ . Now , since  $\sigma$  is well-defined , so  $\sigma \alpha(x) = \sigma \alpha(y)$  which implies that  $\beta(x) = \beta(y)$  and  $(x,y) \in \ker \beta$ . Thus T is QF-injective by proposition (2.22).

The following proposition give a condition under which endomorphism of QF-injective system is F-injective :

**Proposition** (2.24) : Let  $M_s$  be a right S-system with  $T = End_s(M_s)$ , then :

(1) If T is right F-injective , then  $M_s$  is QF-injective .

(2) If  $M_s$  is QF-injective and  $M_s \times M_s$  generates  $\gamma_{M_n}(\alpha)$  for any positive integer n and  $\alpha \in T^n$ , then T is right F-injective.

**Proof :**(1) Let  $\gamma_{M_n}(\alpha) \subseteq \gamma_{M_n}(\beta)$ , where  $\alpha, \beta \in T^n$ ,  $n \in Z^+$ , then  $\gamma_{T_n}(\alpha) \subseteq \gamma_{T_n}(\beta)$ . Since T is right F-injective, so by corollary (2.4) we have  $T\beta \subseteq T\alpha$ . Then, by proposition (2.26) M<sub>s</sub> is QF-injective system.

(2) Let  $\gamma_{T_n}(\alpha) \subseteq \gamma_{T_n}(\beta)$ , where  $\alpha, \beta \in T^n$ ,  $n \in Z^+$ . Then, for any  $(x,y) \in \gamma_{M_n}(\alpha)$ , we have  $\alpha(x) = \alpha(y)$ . Since  $M_s \times M_s$  generates  $\gamma_{M_n}(\alpha)$ , so  $x = \lambda_i m$ ,  $y = \lambda_i k$ , where  $(m, k) \in M_s \times M_s$  and  $\lambda_i \in T_n$ . Then,  $(\lambda_i m, \lambda_i k) \in \gamma_{T_n}(\alpha) \subseteq \gamma_{T_n}(\beta)$ , so



### International Journal of Advanced Research in Science, Engineering and Technology

### Vol. 3, Issue 2 , February 2016

 $\beta(\lambda_i m) = \beta(\lambda_i k)$ . This means that  $\beta(x) = \beta(y)$  and  $(x, y) \in \gamma_{M_n}(\beta)$ . Hence  $\gamma_{M_n}(\alpha) \subseteq \gamma_{M_n}(\beta)$ . Since  $M_s$  is QF-injective system, so  $T\beta \subseteq T\alpha$  and consequently, T is F-injective by corollary (2.4).

#### III -RELATIONSHIP AMOG FQ-INJECTIVE AND QF-INJECTIVE S-SYSTEMS WITH OTHER CLASSES OF INJECTIVITY

The following proposition gives a condition under which FQ-injective system is QF-injective system, but before this we need the following concept :

**Definition** (3.1): An S-system M<sub>s</sub> is called self-generator if it generates all its subsystems .

**Proposition (3.2) :** If  $M_s$  is finitely generated S-system which is self-generator, then  $M_s$  is FQ-injective system if and only if  $M_s$  QF-injective.

**Proof:** Assume that  $M_s$  is FQ-injective system . Let X be finitely  $M_s$ -generated subsystem of  $M_s$  and f be S-homomorphism of X into  $M_s$ . Since  $M_s$  is finitely generated and X is finitely  $M_s$ -generated, so there exists S-epimorphism  $\alpha : M_s \to X$ , so X is finitely generated . Since  $M_s$  is FQ-injective system, so f extends to S-endomorphism g of  $M_s$  such that  $goi_X = f$ , where  $i_X$  is the inclusion map of X into  $M_s$  and then  $M_s$  is QF-injective system of  $M_s$  and then  $M_s$  is QF-injective system of  $M_s$  and f be S-homomorphism of A into  $M_s$ . Since  $M_s$  is self-generator, so there exists S-epimorphism  $\alpha: M_s \to A$ , and then A is finitely  $M_s$ -generated. Since  $M_s$  is QF-injective system of  $M_s$  and then A is finitely  $M_s$ -generated. Since  $M_s$  is QF-injective system, so f extends to S-endomorphism of A into  $M_s$ . Since  $M_s$  is Self-generator, so there exists S-epimorphism  $\alpha: M_s \to A$ , and then A is finitely  $M_s$ -generated. Since  $M_s$  is QF-injective system, so f extends to S-endomorphism g of  $M_s$  such that  $goi_A = f$ , where  $i_A$  is the inclusion map of A into  $M_s$  and then  $M_s$  is FQ-injective system.

The following proposition explain under which condition on finitely E(M<sub>s</sub>)-injective to be injective :

**Proposition** (3.3) : Let  $M_s$  be a finitely generated S-system . Then  $M_s$  is injective system if and only if  $M_s$  is finitely  $E(M_s)$ -injective .

#### **Proof:** $\Rightarrow$ ) It is obvious .

 $\Leftarrow$ ) Let  $M_s$  be finitely  $E(M_s)$ -injective and f be S-monomorphism from  $M_s$  into  $E(M_s)$ . Since  $M_s$  is finitely  $E(M_s)$ -injective, so by proposition(2.10), there exists an S-homomorphism  $g:E(M_s) \rightarrow M_s$  such that  $gof = I_M$  which implies that f is split and  $f(M_s)$  is retract of  $E(M_s)$ , as  $f(M_s) \cong M_s$ . This implies that  $M_s$  is a retract of  $E(M_s)$  and since  $E(M_s)$  is injective, so  $M_s$  is injective.

As a particular case of above proposition, we have the following corollary :

Corollary (3.4): A monoid S is self-injective if and only if S is finitely S-injective S-system.

The following proposition explain under which condition on FQ- injective to being injective, but before this we need the following concept :

**Definition(3.6) :** An S-system  $M_s$  is said to be weakly injective if for every finitely generated subsystem N of  $E(M_s)$ , we have  $N \subseteq X \subseteq E(M_s)$  for some  $X \cong M_s$ .

**Proposition** (3.7) : Let  $M_s$  be a finitely generated system . Then  $M_s$  is injective system if and only if  $M_s$  is weakly injective and FQ-injective .

**Proof:**  $\Rightarrow$ )It is obvious.



### International Journal of Advanced Research in Science, Engineering and Technology

Vol. 3, Issue 2, February 2016

#### REFERENCES

[1] M.S. Abbas and A.Shaymaa , Principally quasi injective system over monoid , journal of advances in mathematics ,Vol .10 , No.1 , pp. 3152-3162 , 2015 .

[2]M.S.Abbas and A.Shaymaa , Quasi principally injective S-systems over monoids , Journal of Advances in Mathematics ,Vol.10 , No.5 , pp. 3493 – 3502 , 6 May 2015 .

[3] J.Ahsan, Monoids characterized by their quasi injective S-systems , Semigroupfroum , Vol.36 , No.3, pp285-292 , 1987 .

[4] J.Ahsan and L.Zhongkui, Prime and semipime acts over monoids with zero, Math. J., Ibaraki University, Vol. 33, pp. 9-15, 2001.

[5] M. Ershad and M.Roueentan , Strongly duo and duo right S-acts , Italian Journal of Pure and Applied Mathematics , Vol. 32 , pp.143-154 , 2014 .

[6] C.V. Hinkle and Jr., The extended centralizer of an S-set, Pacific journal of mathematics, Vol.53, No.1, pp163-170, 1974.
[7] M. Kilp, U. Knauer and A.V. Mikhalev, Monoids acts and categories with applications to wreath products and graphs, Walter de Gruyter. Berlin. New York, 2000.

[8] A. M. Lopez, Jr. and J. K. Luedeman, Quasi-injective S-systems and their S-endomorphism Semigroup, Czechoslovak Math. J., Vol. 29, No.104, pp97-104, 1979.

[9] V.S.Ramamurthi and K.M.Rangaswamy, On finitely injective modules, Journal of Austral Math Soc., 16, pp. 239-248, 1973.

[10] T. Yan, Generalized injective S-acts on a monoid, Advances in mathematics, Vol.40, No.4, pp. 421-432, 2011.

[11] Z.Zhanmin, Some remarks on finitely quasi injective modules, European Journal of Pure and Applied Mathematics, Vol.6, No.2, pp.119-125, 2013.

[12] Z.Zhanmin, Pseudo FQ-injective modules, Bulletin of the Malaysian Mathematical Sciences Society, Vol.36, No.2, pp.385-391, 2013.