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ABSTRACT: Pulsatile flow of a Jeffrey fluid between permeable beds is investigated. The flow between the 

permeable beds is assumed to be governed by Jeffrey model and that in the permeable beds by Darcy’s law. The 

governing equations are solved analytically and the expressions for velocity and mass flux are obtained. The effects of 

the material parameters on the velocity and mass flux are studied numerically and the results are presented through 

graphs. It is found that the increasing Jeffrey parameter enhances the fluid velocity and mass flux in the channel. 

 
I. INTRODUCTION 

 

Pulsatile flow is a periodic flow that oscillates around a mean value not equal to zero, that is  it is a steady flow on 

which is superposed an oscillatory flow. It has important biological applications in relation to hemodynamics and 

industrial applications in relation to heat exchange efficiency of IC engines. Literature survey reveals that most of the 

available research works deal with pulsatile flow of Newtonian fluids in the channels with or without permeable walls. 

But works on Non-Newtonian fluid flow concerning porous media is very limited. The coupled phenomenon of 

pulsating fluid flow and porous media is a problem of prime importance in geomechanics and biomechanics. One such 

problem is the study of hemodynamic effect of the endothelial glycocalyx.  

 

In view of these applications,the study of pulsatile Non-Newtonian fluid flow is necessitated. Wang [1] studied the 

pulsatile flow of a viscous fluid in a porous channel. Vajravelu et al. [2] investigated the pulsatile flow of a  Newtonian 

fluid between permeable beds. 

 
In recent years, the study of non-Newtonian fluid flows are analysed because of its important applications in industry 

and physiology,for  e.g. enhanced oil recovery and chemical process. Sankar et al. [3] studied the pulsatile flow of 

blood through catheterized artery by modeling blood as Herschel-Bulkley fluid and the catheter and artery as rigid 

coaxial circular cylinders. Perturbation method is used to solve the resulting quasi-steady nonlinear coupled implicit 

system of differential equations. The effects of catheterization and non- Newtonian nature of blood are discussed. 

Prashanta Kumar Mandal et al. [4]examined the laminar two dimensional pulsatile flow of blood under the influence of 

externally imposed periodic body acceleration through artery with stenosis. A mathematical model is developed 

bytreating blood as a non- Newtonian fluid characterized by the generalized Power law model incorporating both the 

shear thinning and shear thickening characteristics of the streaming blood. Krishnakumari et al. [5] recently 

investigated peristaltic pumping of a Jeffrey fluid in a porous tube under long wave length and low Reynolds number 

assumptions. Krishnakumari et al. [6] also studied the peristaltic transport of a Jeffrey fluid under the effect of magnetic 

field in an inclined channel. Akbar et al. [7]applied Jeffery fluid model for blood flow through a tapered artery with 

stenosis by assuming blood as Jeffrey fluid. Perturbation method is used to solve the governing equations. Srinivas et 

al. [8] investigated the peristaltic transport of a Jeffrey fluid under the effect of slip in an inclined asymmetric channel. 

The fluid is assumed to be incompressible and electrically conducting. The analytic solution has been derived for the 

stream function. The effect of slip and non-Newtonian parameter on the axial velocity and shear stress are discussed.  

The study of pulsatile flow in a porous channel is important in the dialysis of blood in artificial kidneys and in 

extracting oil/water from the underground reservoirs. Furtherthe behaviorof blood flow in the circulatory system where 

the nutrients are supplied to tissues of various organs and waste products are removed.Vajravelu et al. [9] made a 

detailed study on the pulsatile flow between permeable beds. Sudhakara et al.[10] investigated the pulsatile flow of a 

hydromagneticjeffrey fluid between permeable beds. Hemadri Reddy et al. [11] investigated the effect of thickness of 

the porous material on the peristaltic pumping when the tube wall is provided with non-erodible porous lining. Vasudev 

et al. [12] discussed the interaction of heat transfer with peristaltic pumping of a Williamson fluid through a porous 
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medium in a planar channel, under the assumptions of low Reynolds number and long wave length. Kim et al. [13] 

discussed the effects of membrane length and hydraulic resistance on the steady-state laminar flow of a fluid with 

injection in a cylindrical porous tube using the perturbation approach of the Navier-Stokes and continuity equations. 

Srinivas et al. [14] studied the effects of heat and mass transfer on peristaltic transport in a porous space with compliant 

walls. Vajravelu et al. [15] studied the interaction of peristalsis with heat transfer for the flow of a viscous fluid in a 

vertical porous annular region between two concentric tubes. Using the perturbation method, the solutions are obtained 

for the velocity and the temperature fields. Lalithajyothi et al.  [16] studied the pulsatile flow of a jeffrey fluid in a 

circular tube having internal porous lining.Vajravelu et al. [17] investigated the unsteady flow of two immiscible 

conducting fluids between two permeable beds. Motivated by the above studies, pulsatile flow of a Jeffrey fluid 

between permeable beds is investigated. The fluid is driven by an unsteadypressure gradient and the effects of various 

physical parameters on the flow quantities are discussed through graphs and tables. 
 

II. MATHEMATICAL FORMULATION OF THE PROBLEM 

 

We consider the pulsatile flow of a Jeffrey fluid flow between permeable beds (see fig.1). The permeabilities of lower 

and upper beds are 1k  and 2k  respectively. The flow in upper and lower permeable beds is assumed to be governed by 

Darcy’s law.  

Let the x -axis (the flow direction) be taken midway between the beds and the y -axis be taken perpendicular to the 

beds. The following assumptions are made in the analysis of the problem: 

(a) The permeable beds are homogeneous 

(b) The flow is laminar and fully developed 

(c) The fluid is driven by an unsteady     

pressure gradient, 

int

x

p
p e

x




  
where xp be the pressure and n is the frequency. 

 
Fig.1. Physical model 

In the absence of body forces and body couples, the governing equations of the problem are given by 
2
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Where Real( ) denotes the real part of a complex number. 

Herein the velocity component ( , )u y t is to satisfy the conditions 
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III. NON – DIMENSIONALISATION OF THE FLOW QUANTITIES 

The following non-dimensional quantities are introduced to make the basic equations and the boundary conditions 

dimensionless 

1,2 1,2

1,2 1,2

* * * * * * *

2

1 2

1 2

, , , , , , ,Re ,

,

B

B

u Qu p tU x y Uh
u u p t Q x y

U U U h U h h

h h

k k

 

 

       

 

    

  
* * 2 *

1 * * *2
Re(1 )

u p u

t x y


   
   

   
       (8) 

* 2 *
*

* *

1(1 ) Re

i
i

Q p
Q

t x

 




 
  

  
         (9) 

After neglecting asterisks (*), we get 
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IV. SOLUTION OF THE PROBLEM 

Solving Eqns. (10) and(11) subject to the conditions (12) and(13), we get the velocity field as 
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V. DEDUCTIONS 

 

Taking 1 2 1 2(i.e., )k k k       in Eqn. (14), we obtain the velocity field as follows 
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A. Mass flux 

The mass flux in the channel bounded by beds is given by 
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B. Shear stress 

The shear stresses at the lower and upper beds are given by 
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VI. NUMERICAL RESULTS AND DISCUSSION 

 
The expression for the fluid velocity u is evaluated numerically for different values of physical parameters such as the 

permeability parameter  , porosity parameter  , slip parameter  , Reynolds number Re, Jeffrey parameter 1  and 

nt and are shown in Figures 2 to 11 and Tables 1 to 6. 

Figures 2 to 4 elucidate the variation of fluid velocity  in the channel which is computed from eqn. (14), for different 

values of  , , . It is noticed that the increase in the  ,  ,  , decreases with the velocity  in the channel. Also it 

is found that the unsteady velocity component increases with increasing Re, 1 from figures 5 and 6. From figures 7 to 

11, it is clear that the velocity decreases with the increasing values of nt .  

The variation of mass flux is computed from eqn. (16) for different values of  ,  , , Re and 1 and it is displayed 

in Table 1. It is observed that the mass flux Q decreases with increasing  ,   and  whereas it increases with the 

increasing of 1, Re  as depicted in Table 1. This shows that the effect of permeable bed is to enhance the mass flux 

in the channel which is similar to the behaviour observed by Rajasekhara et al. [18].The non-Newtonian Jeffrey fluid 

pumps more fluid (and hence mass flux is more) when compared with Newtonian fluid.The variation of shear stress is 

computed from eqn. (17) for different values of   ,  , , Re and 1 parameters and are tabulated in Tables 2 to 

6.For, / 4 t    , it is observed that the shear stress increases with the increase in the permeability parameter at 

the lower permeable bed whereas opposite behaviour is noticed at the upper permeability bed. Further, for the increase 

in the Reynolds number, porosity parameter, Jeffrey parameter and slip parameter, decreases the shear stress at lower 

permeable bed whereas opposite behaviour is observed at upper permeable bed.  

 

                                       (16) 

            (17) 
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Fig.2. Velocity profile for  =0.5, t=1,R=0.5,    

1 =0.5, 2 =0.5,P=-1, 1 =0.1, 3 / 4n   

 

Fig.3. Velocity profile for  =0.5,  t=1, 

 =2,P=-1,R=2, 1 =0.1, 3 / 4n   

 

 Fig.4. Velocity profile for =15, t=1,  =2, 

P=-1,R=2, 1 =0.1, 3 / 4n   

 

 
Fig.5.Velocity profile for =15, t=1, 

 =2,P=-1, =0.5, 1 =0.1, 3 / 4n   

 

 

Fig.6.Velocity profile for  =15, t=1, 

 =2,P=-1, =0.5, 3 / 4n  ,R=2 
 

Fig.7.Velocity profile for 1 =5, 2 =7, t=1,  

P=-1, =0.5,R=2, 1 =0.1, =2 
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Fig.8. Velocity profile for 1 =5, 2 =7, t=1,            P=-

1, =0.5,R=4.5, 1 =0.1, =2 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.9. Velocity profile for  =10, t=1,P=-1, 

 =0.5,R=2, 1 =0.1, =2 

 

Fig.10.Velocity profile for  =20, t=1, 

P=-1, =0.5,R=2, 1 =0.1, =2 

Fig. 11.Velocity profile for 1 =30,  

2 =30, t=1,P=-1, =0.5,R=6, 1 =0.1, =2 

 

 

 
 

 

Table1: Effect of 1, , ,    and Re on Mass flux Q  or fixed values of
3

1,
4

t n


   and  1P . 

      
1  Re

 
Q  

2 1 0.5 0.1 1 1.6669 

3 1 0.5 0.1 1 1.6354 

4 1 0.5 0.1 1 1.5443 

5 1 0.5 0.1 1 1.4503 

6 1 0.5 0.1 1 1.3684 

1 1 0.5 0.1 1 1.4984 

1 3 0.5 0.1 1 0.3618 

1 5 0.5 0.1 1 0.2036 

1 7 0.5 0.1 1 0.1461 

1 9 0.5 0.1 1 0.1151 

1 1 1 0.1 1 0.9950 

1 1 2 0.1 1 0.7433 

1 1 3 0.1 1 0.6594 

1 1 4 0.1 1 0.6175 
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1 1 5 0.1 1 0.5923 

1 1 0.5 0.1 1 1.4984 

1 1 0.5 0.2 1 1.6308 

1 1 0.5 0.3 1 1.7356 

1 1 0.5 0.4 1 1.8169 

1 1 0.5 0.5 1 1.8789 

1 1 0.5 0.1 0.5 0.1930 

1 1 0.5 0.1 0.6 0.5185 

1 1 0.5 0.1 0.7 0.8232 

1 1 0.5 0.1 0.8 1.0910 

1 1 0.5 0.1 0.9 1.3159 

Table-2 Variation of Shear Stress with   at the Interface of Lower Permeable Bed (LPB) and Upper  

 

Permeable Bed (UPB) ( =1, P=-1, =0.5,R=1, 1 =0.1) 

 

  
 =2  =3  =4  =5  =6 

/ 4nt   

LPB(at y=-1) 

UPB(at y=1) 

/ 2nt   
LPB(at y=-1) 

UPB(at y=1) 

3 / 4nt   
LPB(at y=-1) 

UPB(at y=1) 

nt   
LPB(at y=-1) 

UPB(at y=1) 

 

1.2650 

-1.2650 

 

 

2.1135 

-2.1135 

 

3.0273 

-3.0273 

 

3.1222 

-3.1222 

 

1.3672 

-1.3672 

 

 

2.3810 

-2.3810 

 

3.3924 

-3.3924 

 

3.4672 

-3.4672 

 

1.4225 

-1.4225 

 

 

2.5433 

-2.5433 

 

3.6206 

-3.6206 

 

3.6639 

-3.6639 

 

1.4563 

-1.4563 

 

 

2.6446 

-2.6446 

 

3.7592 

-3.7592 

 

3.7648 

-3.7648 

 

1.4788 

-1.4788 

 

 

2.7114 

-2.7114 

 

3.8454 

-3.8454 

 

3.8111 

-3.8111 

 
Table – 3 Variation of Shear Stress with R at the Interface of Lower Permeable Bed (LPB) and Upper  

Permeable Bed (UPB) ( =1, P=-1, =0.5, =1, 1 =0.1) 

  
R=1 R=2 R=3 R=4 R=5 

4
nt




 
LPB(at y=-1) 

UPB(at y=1) 

2
nt




 
LPB(at y=-1) 

UPB(at y=1) 

3

4
nt




 
LPB(at y=-1) 

UPB(at y=1) 

nt   
LPB(at y=-1) 

UPB(at y=1) 

 

 

 

1.0637 

-1.0637 

 

 

 

1.7473 

-1.7473 

 

 

 

2.5425 

-2.5425 

 

2.6172 

-2.6172 

 

 

 

-0.1473 

0.1473 

 

 

 

0.5181 

-0.5181 

 

 

 

  1.7264 

-1.7264 

 

2.2018 

-2.2018 

 

 

 

-1.0581 

1.0581 

 

 

 

0.0450 

-0.0450 

 

 

 

  1.4539 

-1.4539 

 

2.0311 

-2.0311 

 

 

 

-1.4843 

1.4843 

 

 

 

-0.0703 

0.0703 

 

 

 

   1.3931 

-1.3931 

 

1.9910 

-1.9910 

 

 

 

-1.6349 

1.6349 

 

 

 

-0.0794 

0.0794 

 

 

 

1.3902 

-1.3902 

 

1.9887 

-1.9887 
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Table –4 Variation of Shear Stress with   at the Interface of Lower Permeable Bed(LPB)and  

Upper Permeable Bed (UPB) (R=1,P=-1, =0.5, =1, 1 =0.1) 

  
 =1  =3  =5  =7  =9 

4
nt




 
LPB(at y=-1) 

UPB(at y=1) 

2
nt




 
LPB(at y=-1) 

UPB(at y=1) 

3

4
nt




 

LPB(at y=-1) 

UPB(at y=1) 

nt   

LPB(at y=-1) 

UPB(at y=1) 

 

 

 

1.0637 

-1.0637 

 

 

 

1.7473 

-1.7473 

 

 

 

2.5425 

-2.5425 

 

2.6172 

-2.6172 

 

 

 

0.9832 

-0.9832 

 

 

 

0.9550 

-0.9550 

 

 

 

    0.8581 

-0.8581 

 

0.5808 

-0.5808 

 

 

 

0.9135 

-0.9135 

 

 

 

0.7041 

-0.7041 

 

 

 

0.4268 

-0.4268 

 

0.1112 

-0.1112 

 

 

 

0.8857 

-0.8857 

 

 

 

0.6048 

-0.6048 

 

 

 

0.2583 

-0.2583 

 

-0.0668 

0.0668 

 

 

 

0.8712 

-0.8712 

 

 

 

0.5526 

-0.5526 

 

 

 

0.1699 

-0.1699 

 

-0.1601 

0.1601 

 

 

 

Table – 5 Variation of Shear Stress with 1  at the Interface of Lower Permeable Bed (LPB) and  

Upper Permeable Bed (UPB) (R=1, P=-1, =0.5,  =1,  =1) 

  1 0.1   1 0.2   1 0.3   1 0.4   1 0.5   

4
nt




 
LPB(at y=-1) 

UPB(at y=1) 

2
nt




 
LPB(at y=-1) 

UPB(at y=1) 

3

4
nt




 
LPB(at y=-1) 

UPB(at y=1) 

 

nt   
LPB(at y=-1) 

UPB(at y=1) 

 

 

 

1.0637 

-1.0637 

 

 

 

1.7473 

-1.7473 

 

 

 

2.5425 

-2.5425 

 

 

2.6172 

-2.6172 

 

 

 

 

0.9724 

-0.9724 

 

 

 

1.6250 

-1.6250 

 

 

 

2.4590 

-2.4590 

 

 

    2.5907 

-2.5907 

 

 

 

0.8721 

-0.8721 

 

 

 

1.4956 

-1.4956 

 

 

 

2.3686 

-2.3686 

 

 

2.5528 

-2.5528 

 

 

 

0.7650 

-0.7650 

 

 

 

1.3642 

-1.3642 

 

 

 

2.2769 

-2.2769 

 

 

2.5092 

-2.5092 

 

 

 

0.6530 

-0.6530 

 

 

 

1.2347 

-1.2347 

 

 

 

2.1876 

-2.1876 

 

 

2.4636 

-2.4636 
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Table – 6 Variation of Shear Stress with  at the Interface of Lower Permeable Bed (LPB) and  

Upper Permeable Bed (UPB) (R=1, P=-1, 1 =0.1, =1,  =1) 

  
 =1  =2  =3  =4  =5 

4
nt




 

LPB(at y=-1) 

UPB(at y=1) 

2
nt




 

LPB(at y=-1) 

UPB(at y=1) 

3

4
nt




LPB(at y=-1) 

UPB(at y=1) 

nt 
LPB(at y=-1) 

UPB(at y=1) 

 

 

 

0.8828 

-0.8828 

 

 

 

1.0813 

-1.0813 

 

 

 

1.3817 

-1.3817 

 

1.3441 

-1.3441 

 

 

 

0.7924 

-0.7924 

 

 

 

0.7483 

-0.7483 

 

 

 

0.8013 

-0.8013 

 

0.7076 

-0.7076 

 

 

 

0.7622 

-0.7622 

 

 

 

0.6373 

-0.6373 

 

 

 

0.6079 

-0.6079 

 

0.4954 

-0.4954 

 

 

 

0.7472 

-0.7472 

 

 

 

0.5818 

-0.5818 

 

 

 

0.5111 

-0.5111 

 

0.3894 

-0.3894 

 

 

 

0.7381 

-0.7381 

 

 

 

0.5485 

-0.5485 

 

 

 

0.4531 

-0.4531 

 

0.3257 

-0.3257 

 

 
VII. NOMENCLATURE 

 

,x y         Cartesian co-ordinates 

  - h              Width of the channel at lower       

                    permeable bed 

h                 Width of the channel at upper     

                    permeable bed  

1k                Permeability of the lower bed 

2k
               

Permeability of the upper bed 

1       1( / )h k dimensionless parameter 

2
           2( / )h k dimensionless parameter 

1Bu
            

Slip velocity at the lower bed 

2Bu
            

Slip velocity at the upper bed 

1 1( / )( / )Q k p x   , Darcy’s velocity in the lower bed  

2 2( / )( / )Q k p x   , Darcy’s velocity in the upper bed 

Q
               

Mass flux 

 P               Pressure 


               

Density 

n                 Frequency 


               

Coefficient of viscosity 

                Slip parameter 

                 Shear stress 
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                 Kinematic viscosity 

Re             (=Uh/ )Reynolds number 

               Porosity parameter 

                Permeability parameter 

1               Jeffrey parameter 

U               Average velocity 
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