ISSN: 2350-0328

International Journal of Advanced Research in Science, Engineering and Technology
 Vol. 4, Issue 6 , June 2017

On Weak ** Commutativity and Rotativity Conditions of Mappings in Common Fixed Point Considerations

Uday Dolas

Department of Mathematics, C.S.A.Govt.P.G.College, SEHORE-466001, M.P., INDIA

Abstract

The concept of weak* commuting mappings was given by H.K. Pathak [3]. has generalized some results of B. Fisher [2] on fixed point theorem by using the concept to weak ${ }^{* *}$ commuting mapping. We have two common fixed point theorems for three self maps of a complete metric space satisfying a rational inequality by using the concepts of weak ${ }^{* *}$ commuting maps and rotativity of maps. We further extend the results of Diviccaro, Sessa and Fisher [1].

KEYWORD: Weak ** commuting mapping, Rotativity of maps, Complete metric space.

I. INTRODUCTION

We begin with the following known definitions:-
Definition 1: Let (X,d) be a space and let S and I be mappings of X in to itself. We define the pair (S,I) to be weak ${ }^{* *}$ commuting.

$$
\begin{aligned}
& \text { if } \quad \mathrm{S}(\mathrm{X}) \subset \mathrm{I}(\mathrm{X}) \\
& \text { and } d\left(S^{2} I^{2} x, I^{2} S^{2} X\right) \leq d\left(S^{2} I x, S^{2} x\right) \leq d\left(S^{2} x, I^{2} S x\right) \leq d(S I x, I S x) \leq d\left(S^{2} x, I^{2}\right) \\
& \text { for all } \mathrm{x} \text { in } \mathrm{X} \text {. }
\end{aligned}
$$

It is obvious that two commuting mapping are also weak $* *$ commuting, but two weak ${ }^{* *}$ commuting do not necessarily commute as shown in example 1 below.

Definition 2: A map $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ is called idempotent, if $\mathrm{T}^{2}=\mathrm{T}$. We note that if mappings are idempotent, then

 our definition of weak ${ }^{* *}$ commuting of pair (S,I) reduces to weak commuting of pair (S,I) defined by Sessa [5].Definition 3: The map T is called rotative w.r.t.I, If $d\left(T x, I^{2} x\right) \leq d\left(I x, T^{2} x\right)$
for all x in X . clearly if T and I are idempotent maps, then definition is obvious.
Common fixed point theorems for a weak ** commuting pair of mappings.
In this section, we have some results on common fixed points for three self maps of a complete metric space satisfying a rational inequality by using the concepts of weak $* *$ commuting maps and rotativity of maps. The following theorem generalizes the result of Diviccaro, Sessa and fisher [1]

Theorem 1. Let S, T and I be three mappings of a complete metric space (X, d) such that foa all x, y in X either

$$
\begin{equation*}
d\left(S^{2} x, T^{2} y\right) \leq K^{\prime}\left[d\left(I^{2} x, S^{2} x\right)+d\left(I^{2} y, T^{2} y\right)\right] \tag{I}
\end{equation*}
$$

ISSN: 2350-0328

International Journal of Advanced Research in Science, Engineering and Technology
 Vol. 4, Issue 6 , June 2017

$$
+K \frac{\left[d\left(I^{2} x, S^{2} x\right) \cdot d\left(I^{2} y, T^{2} y\right)+d\left(I^{2} x, T^{2} y\right) \cdot d\left(I^{2} y, S^{2} x\right)\right]}{d\left(I^{2} x, S^{2} x\right)+d\left(I^{2} y, T^{2} y\right)}
$$

if $\mathrm{d}\left(\mathrm{I}^{2} \mathrm{x}, \mathrm{S}^{2} \mathrm{x}\right)+\mathrm{d}\left(\mathrm{I}^{2} \mathrm{y}, \mathrm{T}^{2} \mathrm{y}\right) \neq 0$, where $\mathrm{K}^{\prime}<1$, and $\left(\mathrm{K}+\mathrm{K}^{\prime}\right)<1 / 2$, or

$$
\begin{equation*}
d\left(S^{2} x, T^{2} y\right)=0 \text { if } d\left(I^{2} x, S^{2} x\right)+d\left(I^{2} y, T^{2} y\right)=0 \tag{II}
\end{equation*}
$$

Suppose that the range of I^{2} contains the range of S^{2} and T^{2}. If either
$\left(a_{1}\right) \mathrm{I}^{2}$ is continuous, I is weak ${ }^{* *}$ commuting with S and T is rotative w.r.t. I ,
$\left(\mathrm{a}_{2}\right) \mathrm{I}^{2}$ is continuous, I is weak ${ }^{* *}$ commuting with T and S is rotative w.r.t. I ,
$\left(a_{3}\right) S^{2}$ is continuous, S is weak ${ }^{* *}$ commuting with I and T is rotative w.r.t. S,
$\left(\mathrm{a}_{4}\right) \mathrm{T}^{2}$ is continuous, T is weak $* *$ commuting with I and S is rotative w.r.t. T
Then S, T and I have a unique common fixed point z. Further, z is the unique common fixed point of S and I and T and I .

Proof. Let x_{0} be an arbitrary point in X. Since the range of I^{2} contains the range of S^{2}, let x_{1} be a point in X such that $S^{2} \quad x_{0}=T^{2} x_{1}$. Since the range of I^{2} contains the range of T^{2}, we can choose a point x_{2} such that $\mathrm{T}^{2} \mathrm{x}_{1}=\mathrm{I}^{2} \mathrm{x}_{2}$ in general, having chosen the point $\mathrm{x}_{2 \mathrm{n}}$ such that :

$$
\mathrm{S}^{2} \mathrm{x}_{2 \mathrm{n}}=\mathrm{I}^{2} \mathrm{x}_{2 \mathrm{n}+1} \mathrm{~T}^{2} \mathrm{x}_{2 \mathrm{n}+1}=\mathrm{I}^{2} \mathrm{x}_{2 \mathrm{n}+2} \quad \text { for } \mathrm{n}=0,1,2 .
$$

\qquad
Now we distinguish three cases :
Case I. Let $\mathrm{d}_{2 \mathrm{n}-1} \neq 0$ and $\mathrm{d}_{2 \mathrm{n}} \neq 0$ for $\mathrm{n}=1,2 \ldots \ldots$. then, We have

$$
d_{2 n-1}+d_{2 n=} d\left(I^{2} x_{2 n}, S^{2} x_{2 n}\right)+d\left(I^{2} x_{2 n+1}, T^{2} x_{2 n+1}\right) \neq 0, \text { for } n=1,2 \ldots \ldots \ldots .
$$

Using inequality (I), we then have

$$
\mathrm{d}_{2 \mathrm{n}}=\mathrm{d}\left(\mathrm{~S}^{2} \mathrm{x}_{2 \mathrm{n}}, \mathrm{~T}^{2} \mathrm{x}_{2 \mathrm{n}+1}\right)
$$

$$
\leq \mathrm{K}\left(\mathrm{~d}_{2 \mathrm{n}-1}+\mathrm{d}_{2 \mathrm{n}}\right)+\mathrm{K} \cdot\left[\frac{d_{2 n-1} d_{2 n}+d\left(\mathrm{~T}^{2} \mathrm{X}_{2 \mathrm{n}-1} \mathrm{~T}^{2} \mathrm{x}_{2 \mathrm{n}+1}\right) \cdot \mathrm{d}\left(\mathrm{~S}^{2} \mathrm{X}_{2 \mathrm{n}}, \mathrm{~S}^{2} \mathrm{X}_{2 \mathrm{n}}\right)}{d_{2 n-1}+d_{2 n}}\right]
$$

ie., $\quad \mathrm{d}_{2 \mathrm{n}} \leq \mathrm{K}\left(\mathrm{d}_{2 \mathrm{n}-1}+\mathrm{d}_{2 \mathrm{n}}\right)+\mathrm{K}\left[\frac{d_{2 n-1} \cdot d_{2 n}}{d_{2 n-1}+d_{2 n}}\right]$
ie., $\quad d_{2 n} \leq K\left(d_{2 n-1}+d_{2 n}\right)+K\left(d_{2 n-1}+d_{2 n}\right)$
Then $\quad \mathrm{d}_{2 \mathrm{n}} \leq \frac{\left(K^{\prime}+K\right)}{\left(1-K^{\prime}-K\right)} d_{2 n-1}$
which implies that

$$
d_{2 n}<d_{2 n-1} \quad \text { since }\left(K^{\prime}+K^{\prime}\right)<1 / 2
$$

Then
(1)
$d\left(S^{2} x_{2 n-1}, T^{2} x_{2 n+1}\right)<d\left(T^{2} x_{2 n-1}, S^{2} x_{2 n}\right)$ \qquad
Similarly, it is proved that $d_{2 n-1}<d_{2 n-2}$
So $\quad d\left(T^{2} x_{2 n-1}, S^{2} x_{2 n}\right)<d\left(S^{2} x_{2 n-1}, T^{2} x_{2 n-1}\right)$ for $\mathrm{n}=1,2$ \qquad

It follows that the sequence

ISSN: 2350-0328

International Journal of Advanced Research in Science, Engineering and Technology
 Vol. 4, Issue 6 , June 2017

(2) $\left\{S^{2} x_{0}, T^{2} x_{1}, S^{2} x_{2} \ldots \ldots . . T^{2} x_{2 n-1}, S^{2} x_{2 n}, T^{2} x_{2 n+1} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots\right.$
is a Cauchy sequence in the complete metric space X and so has a limit w in X .
Hence the sequence

$$
\left\{\mathrm{S}^{2} \mathrm{x}_{2 \mathrm{n}}\right\}=\left\{\mathrm{I}^{2} \mathrm{x}_{2 \mathrm{n}-1}\right\} \text { and }\left\{\mathrm{T}^{2} \mathrm{x}_{2 \mathrm{n}-1}\right\}=\left\{\mathrm{I}^{2} \mathrm{x}_{2 \mathrm{n}}\right\}
$$

converge to the point w because they are subsequences of the sequence (2). Suppose first of all that I^{2} is continuous, then the sequence $\left\{I^{4} x_{2 n}\right\}$ and $\left\{I^{2} S^{2} x_{2 n}\right\}$ converge to the point $I^{2} w$. If I weak $* *$ commutes with S, we have

$$
\begin{aligned}
& d\left(S^{2} I^{2} x_{2 n}, I^{2} w\right) \leq d\left(S^{2} I^{2} x_{2 n}, I^{2} S^{2} x_{2 n}\right)+d\left(I^{2} S^{2} x_{2 n}, I^{2} w\right) \\
& \leq \mathrm{d}\left(\mathrm{~S}^{2} \mathrm{x}_{2 \mathrm{n}}, \mathrm{I}^{2} \mathrm{x}_{2 \mathrm{n}}\right)+\mathrm{d}\left(\mathrm{I}^{2} \mathrm{~S}^{2} \mathrm{x}_{2 \mathrm{n}}, \mathrm{I}^{2} \mathrm{w}\right)
\end{aligned}
$$

which implies, on letting n tend to infinity that the sequence $\left\{S^{2} I^{2} x_{2 n}\right\}$ also converges to $I^{2} w$. We now claim that $\mathrm{T}^{2} \mathrm{w}=\mathrm{I}^{2} \mathrm{w}$. Suppose not. Then we have $\mathrm{d}\left(\mathrm{I}^{2} \mathrm{w}, \mathrm{T}^{2} \mathrm{w}\right)>\mathrm{O}$ and using inequality (I), we obtain

$$
\begin{aligned}
& \mathrm{d}\left(\mathrm{~S}^{2} \mathrm{I}^{2} \mathbf{x}_{2 \mathrm{n}} \mathrm{~T}^{2} \mathrm{w}\right) \leq \mathrm{K}^{\prime}\left[\mathrm{d}\left(\mathrm{I}^{4} \mathbf{x}_{2 \mathrm{n}} \mathrm{~S}^{2} \mathrm{I}^{2} \mathbf{x}_{2 \mathrm{n}}\right)+\mathrm{d}\left(\mathrm{I}^{2} \mathrm{w}, \mathrm{~T}^{2} \mathrm{w}\right)\right] \\
& \quad+K\left[\frac{d\left(I^{4} x_{2 n}, S^{2} I^{2} x_{2 n}\right) \cdot d\left(I^{2} w, T^{2} w\right)+d\left(I^{4} x_{2 n}, T^{2} w\right) \cdot d\left(T^{2} w, S^{2} I^{2} x_{2 n}\right)}{d\left(I^{4} x_{2 n}, S^{2} I^{2} x_{2 n}\right)+d\left(I^{2} w, T^{2} w\right)}\right]
\end{aligned}
$$

On letting n tend to infinity, we deduce that
i.e

$$
\mathrm{d}\left(\mathrm{I}^{2} \mathrm{w}, \mathrm{~T}^{2} \mathrm{w}\right) \leq \mathrm{K}^{\prime} \cdot \mathrm{d}\left(\mathrm{I}^{2} \mathrm{w}, \mathrm{~T}^{2} \mathrm{w}\right)
$$

$$
\left(1-\mathrm{K}^{\prime}\right) \mathrm{d}\left(\mathrm{I}^{2} \mathrm{w}, \mathrm{~T}^{2} \mathrm{w}\right) \leq 0 \text { a contradiction since } \mathrm{K}^{\prime}<1 .
$$

Now suppose that $S^{2} w \neq T^{2} w$, then

$$
\begin{aligned}
& \mathrm{d}\left(\mathrm{~S}^{2} \mathrm{w}, \mathrm{~T}^{2} \mathrm{w}\right) \leq \mathrm{K} \cdot\left[\mathrm{~d}\left(\mathrm{I}^{2} \mathrm{w}, \mathrm{~S}^{2} \mathrm{w}\right)+\mathrm{d}\left(\mathrm{I}^{2} \mathrm{w}, \mathrm{~T}^{2} \mathrm{w}\right)\right] \\
&+\mathrm{K}\left[\frac{d\left(I^{2} w \cdot S^{2} w\right) \cdot d\left(I^{2} w \cdot T^{2} w\right)+d\left(I^{2} w \cdot S^{2} w\right) \cdot d\left(I^{2} w \cdot T^{2} w\right)}{d\left(I^{2} w \cdot S^{2} w\right)+d\left(I^{2} w \cdot T^{2} w\right)}\right]
\end{aligned}
$$

i.e. $\quad d\left(S^{2} w, T^{2} w\right) \leq K^{\prime} d\left(T^{2} w, S^{2} w\right)$
i.e. $\quad\left(1-K^{\prime}\right) d\left(T^{2} w, S^{2} w\right)<0 \quad$ a contradiction.

Thus $\mathrm{I}^{2} \mathrm{w}=\mathrm{S}^{2} \mathrm{w}=\mathrm{T}^{2} \mathrm{w}$.
A similar conclusion is achieved if I weak ${ }^{* *}$ commute with T. Let us now supposse that S^{2} is continuous instead of I^{2}. The in subsequences $\left\{S^{4} x_{2 n}\right\}$ and $\left\{S^{2} I^{2} x_{2 n}\right\}$ converge to the point $S^{2} w$. Since S weak ${ }^{* *}$ commutes with I, we have that the sequence $\left\{I^{2} S^{2} x_{2 n}\right\}$ also converges to $S^{2} w$. Since the range I^{2} contains the range of S^{2}, there exists a point w^{\prime}, such that

$$
I^{2} w^{\prime}=S^{2} w
$$

ISSN: 2350-0328

International Journal of Advanced Research in Science, Engineering and Technology
 Vol. 4, Issue 6, June 2017

Then $\quad T^{2} w \neq S^{2} w=I^{2}{ }^{\prime}$, we have $\mathrm{d}\left(\mathrm{S}^{4} \mathrm{x}_{2 \mathrm{n}}, \mathrm{T}^{2} \mathrm{w}^{\prime}\right) \leq \mathrm{K}^{\prime}\left[\mathrm{d}\left(\mathrm{I}^{2} \mathrm{~S}^{2} \mathrm{x}_{2 \mathrm{n}^{\prime}} \mathrm{S}^{4} \mathrm{x}_{2 \mathrm{n}}\right)+\mathrm{d}\left(\mathrm{I}^{2} \mathrm{w}^{\prime}, \mathrm{T}^{2} \mathrm{w}^{\prime}\right)\right]$

$$
+\mathrm{K}\left[\frac{d\left(I^{2} S^{2} x_{2 n}, S^{4} x_{2 n}\right) \cdot d\left(I^{2} w^{\prime}, T^{2} w\right)+d\left(I^{2} S^{2} x_{2 n}, T^{2} w\right) \cdot d\left(I^{2} w^{\prime}, S^{4} x_{2 n}\right)}{d\left(I^{2} S^{2} x_{2 n}, S^{4} x_{2 n}\right) \cdot d\left(I^{2} w^{\prime}, T^{2} w^{\prime}\right)}\right]
$$

and on letting n tend to infinity, it follows that
$d\left(S^{2} w, T^{2} w^{\prime}\right) \leq K^{\prime}\left[d\left(S^{2} w, S^{2} w\right)+d\left(I^{2} w^{\prime}, T^{2} w^{\prime}\right)\right]$

$$
+\mathrm{K}\left[\frac{\left.d\left(S^{2} w, S^{2} w\right)\right) \cdot d\left(I^{2} w^{\prime}, T^{2} w^{\prime}\right)+d\left(S^{2} w, T^{2} w^{\prime}\right) \cdot d\left(I^{2} w^{\prime}, S^{2} w\right)}{\left.d\left(S^{2} w, S^{2} w\right)\right) \cdot d\left(I^{2} w, T^{2} w\right)}\right]
$$

i.e. $\quad d\left(S^{2} w, T^{2} w^{\prime}\right) \leq K^{\prime} d\left(S^{2} w, S^{2} w^{\prime}\right)$
i.e. $\quad\left(1-K^{\prime}\right) \cdot d\left(S^{2} w, T^{2} w^{\prime}\right) \leq 0$, which is a contradiction.

Thus $S^{2} w=T^{2} w^{\prime}=I^{2} w^{\prime}$. Now suppose that $S^{2} w \neq T^{2} w=I^{2} w^{\prime}$,
Then $\quad d\left(S^{2} w, T^{2} w^{\prime}\right)$

$$
\begin{aligned}
& \leq \mathrm{K}^{\prime}\left[\mathrm{d}\left(\mathrm{~S}^{2} \mathrm{w}^{\prime}, \mathrm{S}^{2} \mathrm{w}^{\prime}\right)+\mathrm{d}\left(\mathrm{I}^{2} \mathrm{w}^{\prime}, \mathrm{T}^{2} \mathrm{w}^{\prime}\right)\right] \\
& +\mathrm{K}\left[\frac{d\left(S^{2} w^{\prime}, S^{2} w^{\prime}\right) \cdot d\left(I^{2} w^{\prime}, T^{2} w^{\prime}\right)+d\left(I^{2} w^{\prime}, T^{2} w^{\prime}\right) \cdot d\left(I^{2} w^{\prime}, S^{2} w^{\prime}\right)}{\left.d\left(S^{2} w^{\prime}, S^{2} w\right)\right) \cdot d\left(I^{2} w^{\prime}, T^{2} w^{\prime}\right)}\right] \\
& =0, \quad \text { a contradiction, and so } \mathrm{I}^{2} \mathrm{w}^{\prime}=\mathrm{S}^{2} \mathrm{w}^{\prime}=\mathrm{T}^{2} \mathrm{w}^{\prime}
\end{aligned}
$$

A similar conclusion is obtained if one assumes that T^{2} is continuous and T is weak $* *$ commuting with I .
Cass II. Let $\mathrm{d}_{2 \mathrm{n}-1}=0$ for some n . Then $\mathrm{I}^{2} \mathrm{x}_{2 \mathrm{n}}=\mathrm{T}^{2} \mathrm{x}_{2 \mathrm{n}-1}=\mathrm{S}^{2} \mathrm{x}_{2 \mathrm{n}}$.
We claim $I^{2} x_{2 n}=T^{2} x_{2 n}$, since otherwise
if $\quad d\left(I^{2} x_{2 n} T^{2} x_{2 n}\right)>0$, inequality (I) implies,
$0<d\left(I^{2} x_{2 n} T^{2} \mathbf{x}_{2 \mathrm{n}}\right)=\mathrm{d}\left(\mathrm{S}^{2} \mathrm{x}_{2 \mathrm{n}} \mathrm{T}^{2} \mathrm{x}_{2 \mathrm{n}}\right)$

$$
\leq \mathrm{K}^{\prime}\left[\mathrm{d}\left(\mathrm{I}^{2} \mathrm{x}_{2 \mathrm{n}} \mathrm{~S}^{2} \mathrm{x}_{2 \mathrm{n}}\right)+\mathrm{d}\left(\left(\mathrm{I}^{2} \mathrm{x}_{2 \mathrm{n}} \cdot \mathrm{~T}^{2} \mathrm{x}_{2 \mathrm{n}}\right)\right]\right.
$$

$$
+K\left[\frac{d\left(I^{2} X_{2 n} \cdot S^{2} X_{2 n}\right) d\left(I^{2} X_{2 n} \cdot T^{2} X_{2 n}\right)+d\left(I^{2} X_{2 n} \cdot T^{2} X_{2 n}\right) \cdot d\left(I^{2} X_{2 n} \cdot S^{2} X_{2 n}\right)}{d\left(I^{2} X_{2 n} \cdot S^{2} X_{2 n}\right)+d\left(\left(I^{2} X_{2 n} \cdot T^{2} X_{2 n}\right)\right.}\right]
$$

$$
=\mathrm{K}^{\prime}\left[\mathrm{d}_{2 \mathrm{n}-1}+\mathrm{d}\left(\left(\mathrm{I}^{2} \mathrm{x}_{2 \mathrm{n}}, \mathrm{~T}^{2} \mathrm{x}_{2 \mathrm{n}}\right)\right]\right.
$$

$$
+K\left[\frac{d_{2 n-1} \cdot d\left(I^{2} x_{2 n} \cdot T^{2} x_{2 n}\right)+d\left(I^{2} x_{2 n} \cdot T^{2} x_{2 n}\right) \cdot d_{2 n-1}}{d_{2 n-1}+d\left(I^{2} x_{2 n} \cdot T^{2} x_{2 n}\right)}\right]
$$

i.e. $\quad 0<d\left(I^{2} x_{2 n}, T^{2} x_{2 n}\right) \leq K^{\prime} . d\left(I^{2} x_{2 n} ; T^{2} x_{2 n}\right)$
i.e. $\quad 0<d\left(1-K^{\prime}\right) \cdot d\left(I^{2} x_{2 n} T^{2} x_{2 n}\right) \leq 0, \quad$ a contradiction.

Thus $\quad I^{2} x_{2 n}=S^{2} x_{2 n}=T^{2} x_{2 n}$

ISSN: 2350-0328

International Journal of Advanced Research in Science, Engineering and Technology
 Vol. 4, Issue 6 , June 2017

Case III. Let $d_{2 n}=0$ for some n. Then $I^{2} x_{2 n+1}=S^{2} x_{2 n}=T^{2} x_{2 n+1} \quad$ and \quad reasoning as in Case(II) $\mathrm{I}^{2} \mathrm{x}_{2 \mathrm{n}+1}=\mathrm{S}^{2} \mathrm{x}_{2 \mathrm{n}+1}=\mathrm{T}^{2} \mathrm{x}_{2 \mathrm{n}+1}$

Therefore in all cases, there exists a point w such that $I^{2} w=S^{2} w=T^{2} w$.
If I weak ${ }^{* *}$ commutes with S , we have
$\mathrm{d}\left(\mathrm{S}^{2} \mathrm{I} w, \mathrm{IS}^{2} \mathrm{w}\right) \leq \mathrm{d}\left(\mathrm{SI}^{2} \mathrm{w}, \mathrm{I}^{2} \mathrm{~S} w\right) \leq \mathrm{d}(\mathrm{SIw}, \mathrm{IS} w) \leq \mathrm{d}\left(\mathrm{S}^{2} \mathrm{w}, \mathrm{I}^{2} \mathrm{w}\right)=0$, which implies that
(3) $\quad S^{2} I w=\mathrm{IS}^{2} w, \mathrm{SI}^{2} w=I^{2} S w, S I w=I S w$, and so $I^{2} S w=S^{3} w$.

Thus $\quad d\left(I^{2} S w, S^{2} S w\right)+d\left(I^{2} w, T^{2} w\right)=0$ and using condition (II), we deduce that $S I^{2} w=S^{2} S w=T^{2} w=I^{2} w$.

It follows that $\mathrm{I}^{2} \mathrm{w}=\mathrm{z}$ is fixed point of S .
Further $\quad d\left(I^{2} I w, S^{2} I w\right)+d\left(I^{2} w, T^{2} w\right)=0$
and using condition (II), we deduce that $\mathrm{Iz}=\mathrm{S}^{2} \mathrm{Iw}=\mathrm{IS}^{2} \mathrm{w}=\mathrm{T}^{2} \mathrm{w}=\mathrm{z} \quad$ and \quad using inequality (I), on the assumption that $\mathrm{T}^{2} \mathrm{z} \neq \mathrm{z}$, we have

$$
\mathrm{d}\left(\mathrm{z}, \mathrm{~T}^{2} \mathrm{z}\right)=\mathrm{d}\left(\mathrm{~S}^{2} \mathrm{z}, \mathrm{~T}^{2} \mathrm{z}\right)
$$

$\leq \mathrm{K}^{\prime}\left[\mathrm{d}\left(\mathrm{I}^{2} \mathrm{z}, \mathrm{S}^{2} \mathrm{z}\right)+\mathrm{d}\left(\mathrm{I}^{2} \mathrm{z}, \mathrm{T}^{2} \mathrm{z}\right)\right]$
$+\mathrm{K}\left[\frac{d\left(I^{2} z, S^{2} z\right) \cdot d\left(I^{2} z, T^{2} z\right)+d\left(I^{2} z, T^{2} z\right) \cdot d\left(I^{2} z, S^{2} z\right)}{d\left(I^{2} z, S^{2} z\right)+d\left(I^{2} z, T^{2} z\right)}\right]$
i.e., $\quad d\left(z, T^{2} z\right) \leq K^{\prime} . d\left(z, T^{2} z\right)$
i.e., $\quad\left(1-K^{\prime}\right) d\left(z, T^{2} z\right)<0, \quad$ a contradiction.

And so $\quad \mathrm{z}=\mathrm{T}^{2} \mathrm{z}$.
Now using the rotativity of T w.r. to I (or w.r. to S), we have
$\mathrm{d}(\mathrm{Tz}, \mathrm{z})=\mathrm{d}\left(\mathrm{Tz}, \mathrm{I}^{2} \mathrm{z}\right) \leq \mathrm{d}\left(\mathrm{Iz}, \mathrm{T}^{2} \mathrm{z}\right)=\mathrm{d}(\mathrm{z}, \mathrm{z})=0$,
and so z is a common fixed point of I, S and T .

If one assumes that I weak ** commutes with T and S is rotativity w.r. to I (or w.r. to T), the proof is of course similar.

Now suppose that z^{\prime} is a second common fixed point of I and S. Then

$$
\begin{aligned}
& \mathrm{d}\left(\mathrm{I}^{2} \mathrm{z}^{\prime}, \mathrm{S}^{2} \mathrm{z}^{\prime}\right)+\mathrm{d}\left(\mathrm{I}^{2} \mathrm{z}, \mathrm{~T}^{2} \mathrm{z}\right)=0 \text { and condition (II) implies that } \\
& \mathrm{z}^{\prime}=\mathrm{Sz} z^{\prime}=\mathrm{S}^{2} \mathrm{z}^{\prime}=\mathrm{T}^{2} \mathrm{z}=\mathrm{z} .
\end{aligned}
$$

We can prove similarly that z is the unique common fixed point of I and T .
This completes the proof of the theorem.

ISSN: 2350-0328

International Journal of Advanced Research in Science, Engineering and Technology
 Vol. 4, Issue 6, June 2017

Example 1.

Let X be the subset of R^{2} defined by

$$
\mathrm{X}=(\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}),
$$

where $\mathrm{A} \equiv(0,0), \mathrm{B} \equiv(0,1), \mathrm{C} \equiv(0,1), \mathrm{D}=(1 / 2,0), \mathrm{E} \equiv(-1,0)$.
Let $\mathrm{I}, \mathrm{S}, \mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ be given by

$$
\begin{aligned}
& \mathrm{I}(\mathrm{~A})=\mathrm{I}(\mathrm{~B})=\mathrm{I}(\mathrm{C})=\mathrm{B}, \quad \mathrm{I}(\mathrm{D})=\mathrm{A}, \mathrm{I}(\mathrm{E})=\mathrm{D}, \\
& \mathrm{~S}(\mathrm{~A})=\mathrm{S}(\mathrm{~B})=\mathrm{S}(\mathrm{C})=\mathrm{B}, \quad \mathrm{~S}(\mathrm{D})=\mathrm{S}(\mathrm{E})=\mathrm{A}, \\
& \mathrm{~T}(\mathrm{~A})=\mathrm{T}(\mathrm{~B})=\mathrm{T}(\mathrm{C})=\mathrm{T}(\mathrm{D})=\mathrm{T}(\mathrm{E})=\mathrm{B} .
\end{aligned}
$$

By routine calculation it is easy to see that I weak ${ }^{* *}$ commutes with S and T is rotative w.r.to S . Clearly I^{2} (or S^{2}) is continuous and

$$
S^{2}(X)=\{B\} \subset\{A, B\}=I^{2}(X) \text { and } T^{2}(X)=\{B\} \subset\{A, B\}=I^{2}(X) \text {. }
$$

Further, and easy routine calculation shows that inequality (I) holds for instance $\mathrm{K}^{\prime}<1$, and $\left(\mathrm{K}+\mathrm{K}^{\prime}\right)<$ $1 / 2$ and condition (II) holds for the points $x, y \in\{A, B, C, D\}$.

Therefore all the conditions of Theorem 1 are satisfied and B is the unique common fixed point of I, S and T.
We also note that is neither commutative nor weakly commutative with S , for otherwise,

$$
\operatorname{SI}(E)=A \neq B=\operatorname{IS}(E)
$$

and $\quad \mathrm{d}(\mathrm{SI}(\mathrm{E}), \mathrm{IS}(\mathrm{E}))=\mathrm{d}(\mathrm{A}, \mathrm{B})=1>1 / 2=\mathrm{d}(\mathrm{A}, \mathrm{D})$

$$
=\mathrm{d}(\mathrm{~S}(\mathrm{E}), \mathrm{I}(\mathrm{E})) .
$$

Example 2.

Let $X=\{x, y\}$ with the discrete metric. Define the mappings

$$
\mathrm{I}=\mathrm{S}=\mathrm{T} \text { by } \mathrm{Ix}=\mathrm{x}, \mathrm{Iy}=\mathrm{y} .
$$

All the conditions of the Theorem 1 are satisfied except condition (II) but I, S and T. have two common fixed points.

Assuming $\mathrm{I}=\mathrm{I}^{2}$ (identity map on X) and dropping the rotativity of T (or S) we have the following corollary.

Corollary 2.

Let S and T be mappings of a complete metric space (X, d) into itself such that for all x, y in X either,
(III) $\mathrm{d}\left(\mathrm{S}^{2} \mathrm{x}, \mathrm{T}^{2} \mathrm{y}\right)$
$\leq \mathrm{K}^{\prime}\left[\mathrm{d}\left(\mathrm{x}, \mathrm{S}^{2} \mathrm{x}\right)+\mathrm{d}\left(\mathrm{y}, \mathrm{T}^{2} \mathrm{y}\right)\right]$
$+K\left[\frac{d\left(x, S^{2} x\right) \cdot d\left(y, T^{2} y\right)+d\left(x, T^{2} \mathrm{y}\right) \cdot \mathrm{d}\left(\mathrm{y}, S^{2} \mathrm{x}\right)}{d\left(x, S^{2} x\right)+d\left(y \cdot T^{2} y\right)}\right]$

ISSN: 2350-0328

International Journal of Advanced Research in Science, Engineering and Technology
 Vol. 4, Issue 6 , June 2017

If $d\left(x, S^{2} x\right)+d\left(y, T^{2} y\right) \neq 0$ where $K^{\prime}<1$ and $\left(K+K^{\prime}\right)<1 / 2$, or $\quad d\left(S^{2} x, T^{2} y\right)=0$ If $d\left(x, S^{2} x\right)+d\left(y, T^{2} y\right)=0$

Then S and T have a unique common fixed point z. Further, z is the unique fixed point of S and of T.
Proof. It is not very hard to show that there exits a point $w \in X$ such that $w=S^{2} w=T^{2} w$.
Thus $d\left(S w, S^{2} S w\right)+d\left(w, T^{2} w\right)=0$ and using condition (III), we deduce that $\quad S w=S^{2} S w=T^{2} w=w$. Again $d\left(w, S^{2} w\right)+d\left(T w, T^{2} T w\right)=0$ and so using condition (III), we deduce that $T w=T^{2} T w=S w=w$. It follows that w is a common fixed point of S and T. The unicity of w follows easily. This completes the proof.

Remark 1.

If follows from the proof of the Theorem 1 that if condition (II) is omitted in the statement of Theorem 1 we can say that w is a concidence point of $\mathrm{I}^{2}, \mathrm{~S}^{2}$ and T^{2}.

Remark 2.

Assuming I, S and T as idempotent maps of X , and $\mathrm{K}^{\prime}=0$, we obtain Theorem 1 of [1].

Remark 3.

Assuming I as identity map and S and T as idempotent map of X and $\mathrm{K}^{\prime}=0$, we obtain Theorem 3 of [2].

Remark 4.

Assuming I, S and T as idempotent maps of X and $\mathrm{S}=\mathrm{T}$ on X , and $\mathrm{K}^{\prime}=0$, we obtain Corollary 2 of [1].

BIBLIOGRAPHY

[1] Diviccaro, M.L., Seesa,S and : "Common fixed point theorems with a rational inequality" Bull. Fisher, B
[2] Fisher, B
[3] Pathak H.K. : Weak **commuting mappings and fixed point, Indian J. pure Appl. Math 17 (2), (1986) 201.211.
[4] Rathore, M.S. and Dolas, U : "Some fixed point theorems, in complete metric space" Jnanabha. 25 (1995), 73-76
[5] Sessa,S. : "On a weak commutativity condition of mappings in fixed point considerations" Publ. Inst. math. 32 (46) (1982), 149-153.
[6] Pathak H.K. and Sharma, : "A note on fixed point theorems of Khan, Swaleh and Sessa". Rekha. The Mathematics Education, Vol. XXVIII, No.3, Sept. 1994, 151-157.
[7] Manro S, Kumar S, Bhatia SS:
Weakly compatible maps of type(A)in G-metric spaces. Demonstr. Math. 2012, 45(4):901-908.

