ISSN: 2350-0328
International Journal of Advanced Research in Science, Engineering and Technology

Vol. 4, Issue 9 , September 2017

Coefficient Estimates of Bi-Univalent Functions Based on Subordination Involving Srivastava-Attiya Operator

Waggas Galib Atshan, Najah Ali Jiben Al-Ziadi
Department of Mathematics, College of Computer Science and Information Technology, University of Al-Qadisiyah, Diwaniya, Iraq
Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq

Abstract

The purpose of the present paper is to introduce and investigate two new subclasses of bi-univalent function of complex order defined in the open unit disk, which are associated with Srivastava-Attiya operator and satisfying subordinate conditions. Furthermore, we find estimates on the Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in the new subclasses. Several (known or new) consequences of the results are also pointed out.

KEYWORDS: Analytic function; univalent function; bi-univalent function; bi-starlike and bi-convex function; subordination; Srivastava-Attiya operator.

I.INTRODUCTION

Let \mathcal{A} denote the class of functions of the form:

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

which are analytic in the open unit disk $U=\{z:|z|<1\}$ and normalized by the conditions $f(0)=0$ and $f^{\prime}(0)=1$. Further, let \mathcal{S} denote the class of all functions in \mathcal{A} which are univalent in U. Some of the important and wellinvestigated subclasses of the class \mathcal{S} include (for example) the class $\mathcal{S}^{*}(\alpha)(0 \leq \alpha<1)$ of starlike functions of order α in U and the class $\mathcal{K}(\alpha)(0 \leq \alpha<1)$ of convex functions of order α in U.
The Koebe One-Quarter Theorem [5] states that the image of U under every function f from \mathcal{S} contains a disk of radius $1 / 4$. Thus every such univalent function has an inverse f^{-1} which satisfies

$$
f^{-1}(f(z))=z \quad(z \in U) \text { and } \quad f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}\right)
$$

where

$$
\begin{equation*}
f^{-1}(w)=g(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots . \tag{2}
\end{equation*}
$$

A function $f \in \mathcal{A}$ is said tobebi-univalent in U if both f and f^{-1} are univalent in U. We denote by Σ the class of all bi-univalent functions in U given by the Taylor-Maclaurin series expansion (1).
If f and g are analytic functions in U, we say that f is subordinate to g, written $f(z)<g(z)$ if there exists a Schwarz function w, which (by definition) is analytic in U with $w(0)=0$ and $|w(z)|<1$ for all $z \in U$, such that $f(z)=$ $g(w(z)), z \in U$. Ma and Minda [11] unified various subclasses of starlike and convex functions for which either of the quantity $\frac{z f^{\prime}(z)}{f(z)}$ (or) $1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}$ issubordinate to a more general superordinate function. For this purpose, they considered an analytic function ϕ with positive real part in the open unit disk $U, \phi(0)=1, \phi^{\prime}(0)>0$, and ϕ maps U onto a region starlike with respect to 1 and symmetric with respect to the real axis. The class of Ma-Minda starlike functions consists of functions $f \in \mathcal{A}$ satisfying the subordination $\frac{z f^{\prime}(z)}{f(z)} \prec \phi(z)$. Similary, the class of Ma-Minda convex functions of functions $f \in \mathcal{A}$ satisfying the subordination $1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec \phi(z)$. A function f is bi- starlike of Ma-Minda type or biconvex of Ma-Minda type if both f and f^{-1} are respectively Ma-Minda starlike or convex. These classes are denoted respectively by $\mathcal{S}_{\Sigma}^{*}(\phi)$ and $\mathcal{K}_{\Sigma}(\phi)$. In the sequel, it is assumed that ϕ is an analytic function with positive real part in

ISSN: 2350-0328

International Journal of Advanced Research in Science, Engineering and Technology

Vol. 4, Issue 9 , September 2017

the unit disk U, satisfying $\phi(0)=1, \phi^{\prime}(0)>0$, and $\phi(U)$ is symmetric with respect to the real axis. Such a function has a series expansion of the form

$$
\begin{equation*}
\phi(z)=1+B_{1} z+B_{2} z^{2}+B_{3} z^{3}+\cdots, \quad\left(B_{1}>0\right) . \tag{3}
\end{equation*}
$$

For two function $f(z) \in \mathcal{A}$ given by (1) and $g(z) \in \mathcal{A}$ given by $g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}$, the Hadamard product (or convolution) of f and g is defined by

$$
\begin{equation*}
(f * g)(z)=z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n}=(g * f)(z) \tag{4}
\end{equation*}
$$

TheSrivastava-Attiya convolution operator [14], $\mathcal{J}_{b}^{S} f(z)$ is defined in terms of the Hurwitz-Lerch Zeta function $\Phi(z, s, a)$ as follows:

$$
\begin{equation*}
\Phi(z, s, a)=\sum_{n=0}^{\infty} \frac{z^{k}}{(n+a)^{s}} \tag{5}
\end{equation*}
$$

$\left(a \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-} ; s \in \mathbb{C}\right.$ when $|z|<1 ; \operatorname{Re}(s)>1$ and $\left.|z|=1\right)$,
where $\mathbb{Z}_{0}^{-}=\mathbb{Z} \backslash \mathbb{N},(\mathbb{Z}=\{0, \pm 1, \pm 2, \ldots\} ; \mathbb{N}=\{1,2,3, \ldots\})$.
Properties of the Hurwitz-Lerch Zeta function $\Phi(z, s, a)$ can be found in the works of Choi and Srivastava [3], Luo and Srivastava [10], Gary et al. [7]. Srivastava and Attiya [14] have introduced the linear operator $\mathcal{J}_{b}^{S}: \mathcal{A} \rightarrow \mathcal{A}$ defined by the Hadamard product as follows:

$$
\begin{equation*}
\mathcal{J}_{b}^{S} f(z)=G_{s, b} * f(z)\left(z \in U ; b \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-} ; s \in \mathbb{C} ; f \in \mathcal{A}\right), \tag{6}
\end{equation*}
$$

where $G_{s, b}(z)=(1+b)^{s}\left[\Phi(z, s, b)-b^{-s}\right](z \in U)$.
Using equations (1), (5) and (6), we have $\mathcal{J}_{b}^{s} f(z)=z+\sum_{n=2}^{\infty} \Gamma_{n} a_{n} z^{n}$, where

$$
\begin{equation*}
\Gamma_{n}=\left|\left(\frac{1+b}{n+b}\right)^{s}\right| \quad,(s \in \mathbb{C} ; b \in \mathbb{C} \backslash\{0,-1,-2, \ldots\} \tag{7}
\end{equation*}
$$

For $f(z) \in \mathcal{A}$ and $z \in U$, Srivastava and Attiya in [14] showed that

$$
\begin{gathered}
\mathcal{J}_{b}^{0} f(z)=f(z), \mathcal{J}_{0}^{1} f(z)=\int_{0}^{z} \frac{f(t)}{t} d t=A f(z), \\
\mathcal{J}_{\gamma}^{1} f(z)=\frac{1+\gamma}{z^{\gamma}} \int_{0}^{z} t^{\gamma-1} f(t) d t=J_{\gamma} f(z)(\gamma>-1), \quad \mathcal{J}_{1}^{\sigma} f(z)=z+\sum_{n=2}^{\infty}\left(\frac{2}{n+1}\right)^{\sigma} a_{n} z^{n}=I^{\sigma} f(z)(\sigma>0),
\end{gathered}
$$

where $A f(z)$ and $J_{\gamma} f(z)$ are the integral operators introduced by Alexander [1] and Bernardi [2], respectively, and $I^{\sigma} f(z)$ is the Jung-Kim-Srivastava integral operator [8] closely related to some multiplier transformation studied by Flett [6].
Recently, a study on bi-univalent function class Σ has increased. A number of articles discussing on non-sharp coefficient estimates for the first two coefficient $\left|a_{2}\right|$ and $\left|a_{3}\right|$ of (1). But the coefficient problem for each of the following Taylor- Maclaurin coefficients:

$$
\left|a_{n}\right| \quad(n \in \mathbb{N} \backslash\{1,2\} ; \mathbb{N}=\{1,2,3, \ldots\}
$$

is still an open problem (see [15]). Many researchers (see [4,9,12,13,15]) have recently introduced and investigated several interesting subclasses of the bi-univalent function class Σ and they have found non-sharp estimates on the first two Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$.
Motivated by the earlier work of Deniz [4], in the present paper, we introduce two new subclasses of the function class Σ of complex order $\tau \in \mathbb{C} \backslash\{0\}$, involving Srivastava-Attiya operator and find estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in the new subclasses of function class Σ. Several related classes are also considered, and connections to earlier known results are made.
Definition 1. A function $f \in \Sigma$ given by (1) is said to be in the class $\mathcal{H}_{\Sigma}^{s, b}(\tau, \lambda ; \phi)$ if the following conditions are satisfied:

$$
\begin{equation*}
1+\frac{1}{\tau}\left(\frac{z\left[\lambda z\left(\mathcal{J}_{b}^{s} f(z)\right)^{\prime}+(1-\lambda) \mathcal{J}_{b}^{s} f(z)\right]^{\prime}}{\lambda z\left(\mathcal{J}_{b}^{s} f(z)\right)^{\prime}+(1-\lambda) \mathcal{J}_{b}^{s} f(z)}-1\right) \prec \phi(z) \tag{8}
\end{equation*}
$$

and

ISSN: 2350-0328

International Journal of Advanced Research in Science, Engineering and Technology

Vol. 4, Issue 9 , September 2017

$$
\begin{equation*}
1+\frac{1}{\tau}\left(\frac{w\left[\lambda w\left(\mathcal{J}_{b}^{s} g(w)\right)^{\prime}+(1-\lambda) \mathcal{J}_{b}^{s} g(w)\right]^{\prime}}{\lambda w\left(\mathcal{J}_{b}^{s} g(w)\right)^{\prime}+(1-\lambda) \mathcal{J}_{b}^{s} g(w)}-1\right) \prec \phi(w), \tag{9}
\end{equation*}
$$

where $\tau \in \mathbb{C} \backslash\{0\} ; 0 \leq \lambda \leq 1 ; z, w \in U$ and the function g is given by (2).
Specializing the parameters b, s and λ suitably, several known and new subclasses can be obtained from the class $\mathcal{H}_{\Sigma}^{s, b}(\tau, \lambda ; \phi)$. We present some of the subclasses of $\mathcal{H}_{\Sigma}^{s, b}(\tau, \lambda ; \phi)$, as given below:
Example 1. For $\lambda=0$ and $\tau \in \mathbb{C} \backslash\{0\}$, a function $f \in \Sigma$, given by (1) is said to be in the class $\mathcal{S}_{\Sigma}^{s, b}(\tau ; \phi)$ if the following conditions are satisfied:

$$
1+\frac{1}{\tau}\left(\frac{z\left(\mathcal{J}_{b}^{s} f(z)\right)^{\prime}}{\mathcal{J}_{b}^{s} f(z)}-1\right) \prec \phi(z)(z \in U) \text { and } \quad 1+\frac{1}{\tau}\left(\frac{w\left(\mathcal{J}_{b}^{s} g(w)\right)^{\prime}}{\mathcal{J}_{b}^{s} g(w)}-1\right) \prec \phi(w)(w \in U),
$$

where the function g is given by (2).
Example 2. For $\lambda=1$ and $\tau \in \mathbb{C} \backslash\{0\}$, a function $f \in \Sigma$, given by (1) is said to be in the class $\mathcal{K}_{\Sigma}^{s, b}(\tau ; \phi)$ if the following conditions are satisfied:

$$
1+\frac{1}{\tau}\left(\frac{z\left(\mathcal{J}_{b}^{s} f(z)\right)^{\prime \prime}}{\left(\mathcal{J}_{b}^{s} f(z)\right)^{\prime}}\right)<\phi(z)(\mathrm{z} \in \mathrm{U}) \quad \text { and } \quad 1+\frac{1}{\tau}\left(\frac{w\left(\mathcal{J}_{b}^{s} g(w)\right)^{\prime \prime}}{\left(\mathcal{J}_{b}^{s} g(w)\right)^{\prime}}\right)<\phi(w)(w \in U)
$$

where the function g is given by (2).
In particular, for $s=0$, we note that $\mathcal{J}_{b}^{s} f(z)=f(z)$ for all $f \in \mathcal{A}$, and thus, the class $\mathcal{H}_{\Sigma}^{s, b}(\tau ; \lambda ; \phi)$ reduces to the following subclasses:
Example 3. For $s=0$, a function $f \in \Sigma$, given by (1) is said to be in the class $\mathcal{H}_{\Sigma}(\tau, \lambda ; \phi)$ if the following conditions are satisfied:

$$
1+\frac{1}{\tau}\left(\frac{z\left[\lambda z f^{\prime}(z)+(1-\lambda) f(z)\right]^{\prime}}{\lambda z f^{\prime}(z)+(1-\lambda) f(z)}-1\right) \prec \phi(z) \quad \text { and } \quad 1+\frac{1}{\tau}\left(\frac{w\left[\lambda w g^{\prime}(w)+(1-\lambda) g(w)\right]^{\prime}}{\lambda w g^{\prime}(w)+(1-\lambda) g(w)}-1\right) \prec \phi(w)
$$

where $\tau \in \mathbb{C} \backslash\{0\} ; 0 \leq \lambda \leq 1 ; z, w \in U$ and the function g is given by (2).
Example 4. For $s=0$ and $\lambda=0$, a function $f \in \Sigma$, given by (1) is said to be in the class $\mathcal{S}_{\Sigma}^{*}(\tau ; \phi)$ if the following conditions are satisfied:

$$
1+\frac{1}{\tau}\left(\frac{z f^{\prime}(z)}{f(z)}-1\right)<\phi(z)(z \in U) \text { and } \quad 1+\frac{1}{\tau}\left(\frac{w g^{\prime}(w)}{g(w)}-1\right) \prec \phi(w)(w \in U)
$$

where $\tau \in \mathbb{C} \backslash\{0\}$ and the function g is given by (2).
Example 5. For $s=0$ and $\lambda=1$, a function $f \in \Sigma$, given by (1) is said to be in the class $\mathcal{K}_{\Sigma}(\tau ; \phi)$ if the following conditions are satisfied:

$$
1+\frac{1}{\tau}\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \prec \phi(z)(z \in U) \quad \text { and } \quad 1+\frac{1}{\tau}\left(\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right) \prec \phi(w)(w \in U)
$$

where $\tau \in \mathbb{C} \backslash\{0\}$ and the function g is given by (2).
Definition 2. A function $f \in \Sigma$, given by (1) is said to be in the class $\mathcal{N}_{\Sigma}^{s, b}(\tau, \lambda ; \phi)$ if the following conditions are satisfied:

$$
\begin{equation*}
1+\frac{1}{\tau}\left[\frac{z\left(\mathcal{J}_{b}^{s} f(z)\right)^{\prime}+z^{2}\left(\mathcal{J}_{b}^{s} f(z)\right)^{\prime \prime}}{(1-\lambda) z+\lambda z\left(\mathcal{J}_{b}^{S} f(z)\right)^{\prime}}-1\right]<\phi(z) \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{1}{\tau}\left[\frac{w\left(\mathcal{J}_{b}^{s} g(w)\right)^{\prime}+w^{2}\left(\mathcal{J}_{b}^{s} g(w)\right)^{\prime \prime}}{(1-\lambda) w+\lambda w\left(\mathcal{J}_{b}^{s} g(w)\right)^{\prime}}-1\right]<\phi(w), \tag{11}
\end{equation*}
$$

where $\tau \in \mathbb{C} \backslash\{0\} ; 0 \leq \lambda \leq 1 ; z, w \in U$ and the function g is given by (2).
On specializing the parameters b, s and λ suitably, several known and new subclasses can be obtained from the class $\mathcal{N}_{\Sigma}^{s, b}(\tau, \lambda ; \phi)$. We present some of the subclasses of $\mathcal{N}_{\Sigma}^{s, b}(\tau, \lambda ; \phi)$, as given below:
Example 6. For $\lambda=0$, a function $f \in \Sigma$, given by (1) is said to be in the class $\mathcal{G}_{\Sigma}^{s, b}(\tau ; \phi)$ if the following conditions are satisfied:

ISSN: 2350-0328

International Journal of Advanced Research in Science, Engineering and Technology

Vol. 4, Issue 9 , September 2017
$1+\frac{1}{\tau}\left[\left(\mathcal{J}_{b}^{S} f(z)\right)^{\prime}+z\left(\mathcal{J}_{b}^{S} f(z)\right)^{\prime \prime}-1\right] \prec \phi(z)(z \in U)$ and $1+\frac{1}{\tau}\left[\left(\mathcal{J}_{b}^{s} g(w)\right)^{\prime}+w\left(\mathcal{J}_{b}^{s} g(w)\right)^{\prime \prime}-1\right] \prec \phi(w)(w \in U)$, where $\tau \in \mathbb{C} \backslash\{0\}$ and the function g is given by (2).
Remark 1. We note that by taking $\lambda=1$, the class $\mathcal{N}_{\Sigma}^{s, b}(\tau, \lambda ; \phi)$ reduce to the class $\mathcal{K}_{\Sigma}^{s, b}(\tau ; \phi)$ which given in example (2).
Example 7. For $s=0$, a function $f \in \Sigma$, given by (1) is said to be in the class $\mathcal{N}_{\Sigma}(\tau, \lambda ; \phi)$ if the following conditions are satisfied:

$$
1+\frac{1}{\tau}\left[\frac{z f^{\prime}(z)+z^{2} f^{\prime \prime}(z)}{(1-\lambda) z+\lambda z f^{\prime}(z)}-1\right] \prec \phi(z) \quad \text { and } \quad 1+\frac{1}{\tau}\left[\frac{w g^{\prime}(w)+w^{2} g^{\prime \prime}(w)}{(1-\lambda) w+\lambda w g^{\prime}(w)}-1\right]<\phi(w)
$$

where $\tau \in \mathbb{C} \backslash\{0\} ; 0 \leq \lambda \leq 1 ; z, w \in U$ and the function g is given by (2).
Example 8. If $s=0$ and $\lambda=0$, a function $f \in \Sigma$, given by (1) is said to be in the class $\mathcal{G}_{\Sigma}(\tau ; \phi)$ if the following conditions are satisfied:

$$
1+\frac{1}{\tau}\left(f^{\prime}(z)+z f^{\prime \prime}(z)-1\right) \prec \phi(z)(z \in U) \text { and } \quad 1+\frac{1}{\tau}\left(g^{\prime}(w)+w g^{\prime \prime}(w)-1\right) \prec \phi(w)(w \in U)
$$

where $\tau \in \mathbb{C} \backslash\{0\}$ and the function g is given by (2).
Remark 2. We note that by taking $s=0$ and $\lambda=1$, the class $\mathcal{N}_{\Sigma}^{s, b}(\tau, \lambda ; \phi)$ reduce to the class $\mathcal{K}_{\Sigma}(\tau ; \phi)$ which given in example (5).
In order to derive our main results, we have to recall here the following lemma[5].
Lemma 1. If $h \in \mathcal{P}$, then $\left|b_{k}\right| \leq 2$ for each $k \in \mathbb{N}$, where \mathcal{P} is the family of all functions h, analytic in U, for which

$$
\operatorname{Re}(h(z))>0 \quad(z \in U) \text { where } h(z)=1+b_{1} z+b_{2} z^{2}+\cdots \quad(z \in U)
$$

II. COEFFICIENT ESTIMATES FOR THE FUNCTIONCLASS $\mathcal{H}_{\Sigma}^{s, b}(\tau, \lambda ; \phi)$ AND $\mathcal{N}_{\Sigma}^{s, b}(\tau, \lambda ; \phi)$

Theorem 1. Let the function $f(z)$ given by (1) be in the class $\mathcal{H}_{\Sigma}^{s, b}(\tau, \lambda ; \phi)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{|\tau| B_{1} \sqrt{B_{1}}}{\sqrt{\left|(1+\lambda)^{2}\left[\left(B_{1}-B_{2}\right)-\tau B_{1}^{2}\right] \Gamma_{2}^{2}+2 \tau(1+2 \lambda) B_{1}^{2} \Gamma_{3}\right|}} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{|\tau|^{2} B_{1}^{2}}{(1+\lambda)^{2} \Gamma_{2}^{2}}+\frac{|\tau| B_{1}}{2(1+2 \lambda) \Gamma_{3}} . \tag{13}
\end{equation*}
$$

Proof. It follows from (8) and (9) that

$$
\begin{equation*}
1+\frac{1}{\tau}\left(\frac{z\left[\lambda z\left(\mathcal{J}_{b}^{S} f(z)\right)^{\prime}+(1-\lambda) \mathcal{J}_{b}^{S} f(z)\right]^{\prime}}{\lambda z\left(\mathcal{J}_{b}^{S} f(z)\right)^{\prime}+(1-\lambda) \mathcal{J}_{b}^{S} f(z)}-1\right)=\phi(u(z)) \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{1}{\tau}\left(\frac{w\left[\lambda w\left(\mathcal{J}_{b}^{S} g(w)\right)^{\prime}+(1-\lambda) \mathcal{J}_{b}^{s} g(w)\right]^{\prime}}{\lambda w\left(\mathcal{J}_{b}^{s} g(w)\right)^{\prime}+(1-\lambda) \mathcal{J}_{b}^{s} g(w)}-1\right)=\phi(v(w)) \tag{15}
\end{equation*}
$$

Define the function $p(z)$ and $q(z)$ by

$$
p(z)=\frac{1+u(z)}{1-u(z)}=1+p_{1} z+p_{2} z+\cdots \quad \text { and } \quad q(z)=\frac{1+v(z)}{1-v(z)}=1+q_{1} z+q_{2} z+\cdots
$$

or equivalently,

$$
u(z)=\frac{p(z)-1}{p(z)+1}=\frac{1}{2}\left[p_{1} z+\left(p_{2}-\frac{p_{1}^{2}}{2}\right) z^{2}+\cdots\right] \text { and } v(z)=\frac{q(z)-1}{q(z)+1}=\frac{1}{2}\left[q_{1} z+\left(q_{2}-\frac{q_{1}^{2}}{2}\right) z^{2}+\cdots\right]
$$

Then $p(z)$ and $q(z)$ are analytic in U with $p(0)=1=q(0)$. Since $u, v: U \rightarrow U$, the functions $p(z)$ and $q(z)$ have a positive real part in U, and $\left|p_{i}\right| \leq 2$ and $\left|q_{i}\right| \leq 2$ for each i.
Since $p(z)$ and $q(z)$ in \mathcal{P}, we have the following forms:

$$
\begin{equation*}
\phi(u(z))=\phi\left(\frac{1}{2}\left[p_{1} z+\left(p_{2}-\frac{p_{1}^{2}}{2}\right) z^{2}+\cdots\right]\right)=\frac{1}{2} B_{1} p_{1} z+\left[\frac{1}{2} B_{1}\left(p_{2}-\frac{p_{1}^{2}}{2}\right)+\frac{1}{4} B_{2}\right] z^{2}+\cdots \tag{16}
\end{equation*}
$$

and

ISSN: 2350-0328

International Journal of Advanced Research in Science, Engineering and Technology

Vol. 4, Issue 9 , September 2017

$$
\begin{equation*}
\phi(v(w))=\phi\left(\frac{1}{2}\left[q_{1} w+\left(q_{2}-\frac{q_{1}^{2}}{2}\right) w^{2}+\cdots\right]\right)=\frac{1}{2} B_{1} q_{1} w+\left[\frac{1}{2} B_{1}\left(p_{2}-\frac{p_{1}^{2}}{2}\right)+\frac{1}{4} B_{2}\right] w^{2}+\cdots . \tag{17}
\end{equation*}
$$

Now, equating the coefficients in (14) and (15), we get

$$
\begin{align*}
\frac{1}{\tau}(1+\lambda) \Gamma_{2} a_{2} & =\frac{1}{2} B_{1} p_{1}, \tag{18}\\
\frac{1}{\tau}\left[2(1+2 \lambda) \Gamma_{3} a_{3}-(1+\lambda)^{2} \Gamma_{2}^{2} a_{2}^{2}\right] & =\frac{1}{2} B_{1}\left(p_{2}-\frac{p_{1}^{2}}{2}\right)+\frac{1}{4} B_{2} p_{1}^{2}, \tag{19}\\
-\frac{1}{\tau}(1+\lambda) \Gamma_{2} a_{2} & =\frac{1}{2} B_{1} q_{1} \tag{20}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{1}{\tau}\left[2(1+2 \lambda) \Gamma_{3}\left(2 a_{2}^{2}-a_{3}\right)-(1+\lambda)^{2} \Gamma_{2}^{2} a_{2}^{2}\right]=\frac{1}{2} B_{1}\left(q_{2}-\frac{q_{1}^{2}}{2}\right)+\frac{1}{4} B_{2} q_{1}^{2} \tag{21}
\end{equation*}
$$

From (18) and (20), we find that

$$
\begin{equation*}
a_{2}=\frac{\tau B_{1} p_{1}}{2(1+\lambda) \Gamma_{2}}=\frac{-\tau B_{1} q_{1}}{2(1+\lambda) \Gamma_{2}}, \tag{22}
\end{equation*}
$$

which implies

$$
\begin{equation*}
p_{1}=-q_{1} \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
8(1+\lambda)^{2} \Gamma_{2}^{2} a_{2}^{2}=\tau^{2} B_{1}^{2}\left(p_{1}^{2}+q_{1}^{2}\right) \tag{24}
\end{equation*}
$$

Adding (19) and (21), by using (22) and (23), we obtain

$$
\begin{equation*}
4\left((1+\lambda)^{2}\left[\left(B_{1}-B_{2}\right)-\tau B_{1}^{2}\right] \Gamma_{2}^{2}+2 \tau(1+2 \lambda) B_{1}^{2} \Gamma_{3}\right) a_{2}^{2}=\tau^{2} B_{1}^{3}\left(p_{2}+q_{2}\right) . \tag{25}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
a_{2}^{2}=\frac{\tau^{2} B_{1}^{3}\left(p_{2}+q_{2}\right)}{4\left((1+\lambda)^{2}\left[\left(B_{1}-B_{2}\right)-\tau B_{1}^{2}\right] \Gamma_{2}^{2}+2 \tau(1+2 \lambda) B_{1}^{2} \Gamma_{3}\right)} . \tag{26}
\end{equation*}
$$

Applying Lemma (1) for the coefficients p_{2} and q_{2}, we immediately have

$$
\begin{equation*}
\left|a_{2}\right|^{2} \leq \frac{|\tau|^{2} B_{1}^{3}}{\left|(1+\lambda)^{2}\left[\left(B_{1}-B_{2}\right)-\tau B_{1}^{2}\right] \Gamma_{2}^{2}+2 \tau(1+2 \lambda) B_{1}^{2} \Gamma_{3}\right|} . \tag{27}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{|\tau| B_{1} \sqrt{B_{1}}}{\sqrt{\left|(1+\lambda)^{2}\left[\left(B_{1}-B_{2}\right)-\tau B_{1}^{2}\right] \Gamma_{2}^{2}+2 \tau(1+2 \lambda) B_{1}^{2} \Gamma_{3}\right|}} . \tag{28}
\end{equation*}
$$

This gives the bound on $\left|a_{2}\right|$ as asserted in (12).
Next, in order to find the bound on $\left|a_{3}\right|$, by subtracting (21) from (19), we get

$$
\begin{equation*}
\frac{4}{\tau}(1+2 \lambda)\left(a_{3}-a_{2}^{2}\right) \Gamma_{3}=\frac{B_{1}}{2}\left(p_{2}-q_{2}\right)+\frac{\left(B_{2}-B_{1}\right)}{4}\left(p_{1}^{2}-q_{1}^{2}\right) . \tag{29}
\end{equation*}
$$

It follows from (22), (23) and (29) that

$$
a_{3}=\frac{\tau^{2} B_{1}^{2}\left(p_{1}^{2}+q_{1}^{2}\right)}{8(1+\lambda)^{2} \Gamma_{2}^{2}}+\frac{\tau B_{1}\left(p_{2}-q_{2}\right)}{8(1+2 \lambda) \Gamma_{3}} .
$$

Applying Lemma (1) once again for the coefficients p_{2} and q_{2}, we readily get

$$
\left|a_{3}\right| \leq \frac{|\tau|^{2} B_{1}^{2}}{(1+\lambda)^{2} \Gamma_{2}^{2}}+\frac{|\tau| B_{1}}{2(1+2 \lambda) \Gamma_{3}} .
$$

This completes the proof of Theorem (1).
By putting $\lambda=0$ in Theorem (1), we have the following corollary.
Corollary 1. Let the function $f(z)$ given by (1) be in the class $\mathcal{S}_{\Sigma}^{s, b}(\tau ; \phi)$. Then

$$
\left|a_{2}\right| \leq \frac{|\tau| B_{1} \sqrt{B_{1}}}{\sqrt{\left|\left[\left(B_{1}-B_{2}\right)-\tau B_{1}^{2}\right] \Gamma_{2}^{2}+2 \tau B_{1}^{2} \Gamma_{3}\right|}} \text { and }\left|a_{3}\right| \leq \frac{|\tau|^{2} B_{1}^{2}}{\Gamma_{2}^{2}}+\frac{|\tau| B_{1}}{2 \Gamma_{3}} .
$$

By putting $\lambda=1$ in Theorem (1), we have the following corollary.
Corollary 2. Let the function $f(z)$ given by (1) be in the class $\mathcal{K}_{\Sigma}^{s, b}(\tau ; \phi)$. Then

ISSN: 2350-0328

International Journal of Advanced Research in Science, Engineering and Technology

Vol. 4, Issue 9 , September 2017

$$
\left|a_{2}\right| \leq \frac{|\tau| B_{1} \sqrt{B_{1}}}{\sqrt{\left|4\left[\left(B_{1}-B_{2}\right)-\tau B_{1}^{2}\right] \Gamma_{2}^{2}+6 \tau B_{1}^{2} \Gamma_{3}\right|}} \text { and }\left|a_{3}\right| \leq \frac{|\tau|^{2} B_{1}^{2}}{4 \Gamma_{2}^{2}}+\frac{|\tau| B_{1}}{6 \Gamma_{3}} .
$$

Taking $s=0$, we have $\Gamma_{n}=1(n \geq 2)$ in Theorem (1), and we can state the coefficient estimates for the functions in the subclass $\mathcal{H}_{\Sigma}(\tau, \lambda ; \phi)$.
Corollary 3. Let the function $f(z)$ given by (1) be in the class $\mathcal{H}_{\Sigma}(\tau, \lambda ; \phi)$.Then

$$
\left|a_{2}\right| \leq \frac{|\tau| B_{1} \sqrt{B_{1}}}{\sqrt{\left|(1+\lambda)^{2}\left(B_{1}-B_{2}\right)+\tau\left(1+2 \lambda-\lambda^{2}\right) B_{1}^{2}\right|}} \text { and }\left|a_{3}\right| \leq \frac{|\tau|^{2} B_{1}^{2}}{(1+\lambda)^{2}}+\frac{|\tau| B_{1}}{2(1+2 \lambda)} .
$$

Taking $\lambda=1$ in Corollary 3, we get the following corollary
Corollary 4. Let the function $f(z)$ given by (1) be in the class $\mathcal{K}_{\Sigma}(\tau ; \phi)$.Then

$$
\left|a_{2}\right| \leq \frac{|\tau| B_{1} \sqrt{B_{1}}}{\sqrt{\left|4\left(B_{1}-B_{2}\right)+2 \tau B_{1}^{2}\right|}} \text { and }\left|a_{3}\right| \leq \frac{|\tau|^{2} B_{1}^{2}}{4}+\frac{|\tau| B_{1}}{6} .
$$

Remark 3. Putting $\lambda=0$ in Corollary (3), we obtain the corresponding result given by Murugusundaramoorthy et al. [12].
Theorem 2. Let the function $f(z)$ given by (1) be in the class $\mathcal{N}_{\Sigma}^{s, b}(\tau, \lambda ; \phi)$.Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{|\tau| B_{1} \sqrt{B_{1}}}{\sqrt{\left|4\left[\tau\left(\lambda^{2}-2 \lambda\right) B_{1}^{2}+(2-\lambda)^{2}\left(B_{1}-B_{2}\right)\right] \Gamma_{2}^{2}+3 \tau(3-\lambda) B_{1}^{2} \Gamma_{3}\right|}} \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{|\tau|^{2} B_{1}^{2}}{4(2-\lambda)^{2} \Gamma_{2}^{2}}+\frac{|\tau| B_{1}}{3(3-\lambda) \Gamma_{3}} . \tag{31}
\end{equation*}
$$

Proof. We can write the argument inequalities in (10) and (11) equivalently as follows:

$$
\begin{equation*}
1+\frac{1}{\tau}\left(\frac{z\left(\mathcal{J}_{b}^{s} f(z)\right)^{\prime}+z^{2}\left(\mathcal{J}_{b}^{S} f(z)\right)^{\prime \prime}}{(1-\lambda) z+\lambda z\left(\mathcal{J}_{b}^{s} f(z)\right)^{\prime}}-1\right)=\phi(u(z)) \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{1}{\tau}\left(\frac{w\left(\mathcal{J}_{b}^{s} g(w)\right)^{\prime}+w^{2}\left(\mathcal{J}_{b}^{s} g(w)\right)^{\prime \prime}}{(1-\lambda) w+\lambda w\left(\mathcal{J}_{b}^{s} g(w)\right)^{\prime}}-1\right)=\phi(v(w)) \tag{33}
\end{equation*}
$$

and proceeding as in the proof of Theorem (1), from (32) and (33), we can arrive the following relations

$$
\begin{align*}
\frac{2}{\tau}(2-\lambda) \Gamma_{2} a_{2} & =\frac{1}{2} B_{1} p_{1}, \tag{34}\\
\frac{1}{\tau}\left[4\left(\lambda^{2}-2 \lambda\right) \Gamma_{2}^{2} a_{2}^{2}+3(3-\lambda) \Gamma_{3} a_{3}\right] & =\frac{1}{2} B_{1}\left(p_{2}-\frac{p_{1}^{2}}{2}\right)+\frac{1}{4} B_{2} p_{1}^{2}, \tag{35}\\
\frac{-2}{\tau}(2-\lambda) \Gamma_{2} a_{2} & =\frac{1}{2} B_{1} q_{1} \tag{36}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{1}{\tau}\left[4\left(\lambda^{2}-2 \lambda\right) \Gamma_{2}^{2} a_{2}^{2}+3(3-\lambda) \Gamma_{3}\left(2 a_{2}^{2}-a_{3}\right)\right]=\frac{1}{2} B_{1}\left(q_{2}-\frac{q_{1}^{2}}{2}\right)+\frac{1}{4} B_{2} q_{1}^{2} . \tag{37}
\end{equation*}
$$

From (34) and (36), we find that

$$
\begin{equation*}
a_{2}=\frac{\tau B_{1} p_{1}}{4(2-\lambda) \Gamma_{2}}=\frac{-\tau B_{1} q_{1}}{4(2-\lambda) \Gamma_{2}}, \tag{38}
\end{equation*}
$$

which implies

$$
\begin{equation*}
p_{1}=-q_{1}, \tag{39}
\end{equation*}
$$

and

$$
\begin{equation*}
32(2-\lambda)^{2} \Gamma_{2}^{2} a_{2}^{2}=\tau^{2} B_{1}^{2}\left(p_{1}^{2}+q_{1}^{2}\right) . \tag{40}
\end{equation*}
$$

Adding (35) and (37), by using (38) and (39), we obtain

$$
\begin{equation*}
4\left(4\left[\tau\left(\lambda^{2}-2 \lambda\right) B_{1}^{2}+(2-\lambda)^{2}\left(B_{1}-B_{2}\right)\right] \Gamma_{2}^{2}+3 \tau(3-\lambda) B_{1}^{2} \Gamma_{3}\right) a_{2}^{2}=\tau^{2} B_{1}^{3}\left(p_{2}+q_{2}\right) . \tag{41}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
a_{2}^{2}=\frac{\tau^{2} B_{1}^{3}\left(p_{2}+q_{2}\right)}{4\left(4\left[\tau\left(\lambda^{2}-2 \lambda\right) B_{1}^{2}+(2-\lambda)^{2}\left(B_{1}-B_{2}\right)\right] \Gamma_{2}^{2}+3 \tau(3-\lambda) B_{1}^{2} \Gamma_{3}\right)} . \tag{42}
\end{equation*}
$$

ISSN: 2350-0328

International Journal of Advanced Research in Science, Engineering and Technology

Vol. 4, Issue 9 , September 2017
Applying Lemma (1) for the coefficients p_{2} and q_{2}, we immediately have

$$
\begin{equation*}
\left|a_{2}\right|^{2} \leq \frac{|\tau|^{2} B_{1}^{3}}{\left|4\left[\tau\left(\lambda^{2}-2 \lambda\right) B_{1}^{2}+(2-\lambda)^{2}\left(B_{1}-B_{2}\right)\right] \Gamma_{2}^{2}+3 \tau(3-\lambda) B_{1}^{2} \Gamma_{3}\right|} \tag{43}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{|\tau| B_{1} \sqrt{B_{1}}}{\sqrt{\left|4\left[\tau\left(\lambda^{2}-2 \lambda\right) B_{1}^{2}+(2-\lambda)^{2}\left(B_{1}-B_{2}\right)\right] \Gamma_{2}^{2}+3 \tau(3-\lambda) B_{1}^{2} \Gamma_{3}\right|}} \tag{44}
\end{equation*}
$$

This gives the bound on $\left|a_{2}\right|$ as asserted in (30).
Next, in order to find the bound on $\left|a_{3}\right|$, by subtracting (37) from (35), we get

$$
\begin{equation*}
\frac{6(3-\lambda)}{\tau} \Gamma_{3} a_{3}-\frac{6(3-\lambda)}{\tau} \Gamma_{3} a_{2}^{2}=\frac{B_{1}}{2}\left(p_{2}-q_{2}\right)+\frac{\left(B_{2}-B_{1}\right)}{4}\left(p_{1}^{2}-q_{1}^{2}\right) . \tag{45}
\end{equation*}
$$

It follows from (38), (39) and (45) that

$$
a_{3}=\frac{\tau^{2} B_{1}^{2}\left(p_{1}^{2}+q_{1}^{2}\right)}{32(2-\lambda) \Gamma_{2}^{2}}+\frac{\tau B_{1}\left(p_{2}-q_{2}\right)}{12(3-\lambda) \Gamma_{3}} .
$$

Applying Lemma (1) once again for the coefficients p_{2} and q_{2}, we readily get

$$
\left|a_{3}\right| \leq \frac{|\tau|^{2} B_{1}^{2}}{4(2-\lambda)^{2} \Gamma_{2}^{2}}+\frac{|\tau| B_{1}}{3(3-\lambda) \Gamma_{3}} .
$$

This completes the proof of Theorem (2).
By putting $\lambda=0$ in Theorem (2), we have the following corollary
Corollary 5. Let the function $f(z)$ given by (1) be in the class $\mathcal{G}_{\Sigma}^{s, b}(\tau ; \phi)$. Then

$$
\left|a_{2}\right| \leq \frac{|\tau| B_{1} \sqrt{B_{1}}}{\sqrt{\left|16\left(B_{1}-B_{2}\right) \Gamma_{2}^{2}+9 \tau B_{1}^{2} \Gamma_{3}\right|}} \text { and }\left|a_{3}\right| \leq \frac{|\tau|^{2} B_{1}^{2}}{16 \Gamma_{2}^{2}}+\frac{|\tau| B_{1}}{9 \Gamma_{3}} .
$$

Taking $s=0$, we have $\Gamma_{n}=1 \quad(n \geq 2)$ in Theorem (2), and we can state the coefficient estimates for the functions in the subclass $\mathcal{N}_{\Sigma}(\tau, \lambda ; \phi)$.
Corollary 6. Let the function $f(z)$ given by (1) be in the class $\mathcal{N}_{\Sigma}(\tau, \lambda ; \phi)$. Then

$$
\left|a_{2}\right| \leq \frac{|\tau| B_{1} \sqrt{B_{1}}}{\sqrt{\left|4(2-\lambda)^{2}\left(B_{1}-B_{2}\right)+\tau\left(9-11 \lambda+4 \lambda^{2}\right) B_{1}^{2}\right|}} \text { and }\left|a_{3}\right| \leq \frac{|\tau|^{2} B_{1}^{2}}{4(2-\lambda)^{2}}+\frac{|\tau| B_{1}}{3(3-\lambda)} .
$$

Taking $\lambda=0$ in Corollary (6), we get the following corollary
Corollary 7. Let the function $f(z)$ given by (1) be in the class $\mathcal{G}_{\Sigma}(\tau ; \phi)$. Then

$$
\left|a_{2}\right| \leq \frac{|\tau| B_{1} \sqrt{B_{1}}}{\sqrt{\left|16\left(B_{1}-B_{2}\right)+9 \tau B_{1}^{2}\right|}} \text { and }\left|a_{3}\right| \leq \frac{|\tau|^{2} B_{1}^{2}}{16}+\frac{|\tau| B_{1}}{9} .
$$

Remark 4. Putting $\lambda=1$ in Corollary (6), we obtain the results given by Corollary (4).

III. COROLLARIES AND ITS CONSEQUENCES

For the class of strongly starlike functions, the function ϕ is given by

$$
\begin{equation*}
\phi(z)=\left(\frac{1+z}{1-z}\right)^{\alpha}=1+2 \alpha z+2 \alpha^{2} z^{2}+\cdots \quad(0<\alpha \leq 1), \tag{46}
\end{equation*}
$$

which gives $B_{1}=2 \alpha$ and $B_{2}=2 \alpha^{2}$.
Corollary 8. By choosing $\phi(z)$ of the form (46), we state the following results
(i) for function $f \in \mathcal{H}_{\Sigma}^{s, b}(\tau, \lambda ; \phi)$, by Theorem (1),

$$
\left|a_{2}\right| \leq \frac{2|\tau| \alpha}{\sqrt{\left|(1+\lambda)^{2}(1-\alpha-2 \tau \alpha) \Gamma_{2}^{2}+4 \tau \alpha(1+2 \lambda) \Gamma_{3}\right|}} \text { and }\left|a_{3}\right| \leq \frac{4|\tau|^{2} \alpha^{2}}{(1+\lambda)^{2} \Gamma_{2}^{2}}+\frac{|\tau| \alpha}{(1+2 \lambda) \Gamma_{3}} \text {. }
$$

(ii) for function $f \in \mathcal{N}_{\Sigma}^{s, b}(\tau, \lambda ; \phi)$, by Theorem (2),

$$
\left|a_{2}\right| \leq \frac{2|\tau| \alpha}{\sqrt{\left|4\left[2 \tau \alpha\left(\lambda^{2}-2 \lambda\right)+(1-\alpha)(2-\lambda)^{2}\right] \Gamma_{2}^{2}+6 \tau \alpha(3-\lambda) \Gamma_{3}\right|}} \quad \text { and }\left|a_{3}\right| \leq \frac{|\tau|^{2} \alpha^{2}}{(2-\lambda)^{2} \Gamma_{2}^{2}}+\frac{2|\tau| \alpha}{3(3-\lambda) \Gamma_{3}} .
$$

On the other hand if we take

ISSN: 2350-0328

International Journal of Advanced Research in Science, Engineering and Technology

Vol. 4, Issue 9 , September 2017

$$
\begin{equation*}
\phi(z)=\frac{1+(1-2 \beta) z}{1-z}=1+2(1-\beta) z+2(1-\beta) z^{2}+\cdots \quad(0 \leq \beta<1), \tag{47}
\end{equation*}
$$

then we have $B_{1}=B_{2}=2(1-\beta)$.
Corollary 9. By choosing $\phi(z)$ of the form (47), we state the following results
(i) for function $f \in \mathcal{H}_{\Sigma}^{s, b}(\tau, \lambda ; \phi)$, by Theorem (1),

$$
\left|a_{2}\right| \leq \frac{|\tau| \sqrt{2(1-\beta)}}{\sqrt{\left|2 \tau(1+2 \lambda) \Gamma_{3}-\tau(1+\lambda)^{2} \Gamma_{2}^{2}\right|}} \text { and }\left|a_{3}\right| \leq \frac{4|\tau|^{2}(1-\beta)^{2}}{(1+\lambda)^{2} \Gamma_{2}^{2}}+\frac{|\tau|(1-\beta)}{(1+2 \lambda) \Gamma_{3}} .
$$

(ii) for function $f \in \mathcal{N}_{\Sigma}^{s, b}(\tau, \lambda ; \phi)$, by Theorem (2),

$$
\left|a_{2}\right| \leq \frac{|\tau| \sqrt{2(1-\beta)}}{\sqrt{\left|3 \tau(3-\lambda) \Gamma_{3}+4 \tau\left(\lambda^{2}-2 \lambda\right) \Gamma_{2}^{2}\right|}} \quad \text { and } \quad\left|a_{3}\right| \leq \frac{|\tau|^{2}(1-\beta)^{2}}{(2-\lambda)^{2} \Gamma_{2}^{2}}+\frac{2|\tau|(1-\beta)}{3(3-\lambda) \Gamma_{3}} .
$$

Corollary 10. Let $f(z)$ given by (1) be in the class $\mathcal{S}_{\Sigma}^{s, b}(\tau ; \phi)$ and $\phi(z)$ is of the form (46), then from Theorem (1), we have

$$
\left|a_{2}\right| \leq \frac{2|\tau| \alpha}{\sqrt{\left|(1-\alpha-2 \tau \alpha) \Gamma_{2}^{2}+4 \tau \alpha \Gamma_{3}\right|}} \text { and }\left|a_{3}\right| \leq \frac{4|\tau|^{2} \alpha^{2}}{\Gamma_{2}^{2}}+\frac{|\tau| \alpha}{\Gamma_{3}} .
$$

Corollary 11. Let $f(z)$ given by (1) be in the class $\mathcal{S}_{\Sigma}^{s, b}(\tau ; \phi)$ and $\phi(z)$ is of the form (47), then from Theorem (1), we have

$$
\left|a_{2}\right| \leq \frac{|\tau| \sqrt{2(1-\beta)}}{\sqrt{\left|2 \tau \Gamma_{3}-\tau \Gamma_{2}^{2}\right|}} \text { and }\left|a_{3}\right| \leq \frac{4|\tau|^{2}(1-\beta)^{2}}{\Gamma_{2}^{2}}+\frac{|\tau|(1-\beta)}{\Gamma_{3}} \text {. }
$$

Remark 5. Putting $s=0$ and $\tau=1$ in Corollary (10) and Corollary (11), we obtain the corresponding results given by Li and Wang [9].
Corollary 12. Let $f(z)$ given by (1) be in the class $\mathcal{K}_{\Sigma}^{s, b}(\tau ; \phi)$ and $\phi(z)$ is of the form (46), then from Theorem (1), we have

$$
\left|a_{2}\right| \leq \frac{|\tau| \alpha}{\sqrt{\left|(1-\alpha-2 \tau \alpha) \Gamma_{2}^{2}+3 \tau \alpha \Gamma_{3}\right|}} \text { and }\left|a_{3}\right| \leq \frac{|\tau|^{2} \alpha^{2}}{\Gamma_{2}^{2}}+\frac{|\tau| \alpha}{3 \Gamma_{3}} .
$$

Corollary 13. Let $f(z)$ given by (1) be in the class $\mathcal{K}_{\Sigma}^{s, b}(\tau ; \phi)$ and $\phi(z)$ is of the form (47), then from Theorem (1), we have

$$
\left|a_{2}\right| \leq \frac{|\tau| \sqrt{2(1-\beta)}}{\sqrt{\left|6 \tau \Gamma_{3}-4 \tau \Gamma_{2}^{2}\right|}} \text { and }\left|a_{3}\right| \leq \frac{|\tau|^{2}(1-\beta)^{2}}{\Gamma_{2}^{2}}+\frac{|\tau|(1-\beta)}{3 \Gamma_{3}} .
$$

Remark 6. Putting $s=0$ and $\tau=1$ in Corollary (12) and Corollary (13), we obtain the corresponding results given by Murugusundaramoorthy et al. [13].

REFERENCES

[1] J. W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. of Math., 17 (1915), 12-22.
[2] S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc., 135 (1969), 429-446.
[3] J. Choi and H. M. Srivastava, Certain families of series associated with the Hurwitz-Lerch Zeta function, Appl. Math. Comput., 170 (2005), 399-409.
[4] E. Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. of classical Analysis, 2 (1) (2013), 49-60.
[5] P. L. Duren, Univalent Functions, Grundleheren der MathematischenWissenschaften 259, Springer-Verlage, New York, Berlin, Heidelberg, Tokyo, 1983.
6] T. M. Flett, The dual of an inequality of Hardy and Littewood and some related inequalities, J. Math. Anal. Appl., 38 (1972), 746-765.
[7] M. Gary, K. Jain and H. M. Srivastava, Some relationships between the generalized Apostol-Bernoulli polynomials and Hurwitz-Lerch Zeta functions, Integral Transforms Spec. Funct., 17(2006), 803-815.
8] B. Jung, Y. C. Kim and H. M. Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operator, J. Math. Anal. Appl., 176 (1993), 138-147.
9] X. -F. Li and A. -P. Wang, Two new subclasses of bi-univalent functions, Internat. Math. Forum, 7 (2012), 1495-1504.
[10] Q. M. Luo and H. M. Srivastava, Some generalizations of the Apostol- Bernoulli and Apostol-Euler polynomials, J. of Math. Anal. and Appl. 308 (2005), 290-302.
[11] W. Ma and D. Minda, A unified treatment of some special classes of univalent functions, Proceedings of the conference on complex analysis, Z. Li, F. Ren, L. Yang and S. Zhang, eds. Int. Press (1994), 157-169.
[12] G. Murugusundaramoorthy, T. Janani and N. E. Cho, Bi-Univalent functions of complex order based on subordinate conditions involving Hurwitz-Lerch Zeta function, East Asian Math. J., 32 (1) (2016), 47-59.

ISSN: 2350-0328

International Journal of Advanced Research in Science, Engineering and Technology

Vol. 4, Issue 9 , September 2017

[13] G. Murugusundaramoorthy, C. Selvaraj and O. S. Babu, Coefficient estimates for pascu-type subclasses of bi-univalent functions based on subordinations, Int. J. of Nonliner Science, 19 (1) (2015), 47-52.
[14] H. M. Srivastava and A. A. Attiya, An integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination, Integral Transforms and Special Functions, 18 (2007), 207-216
[15] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (2010), 1188-1192.

