

International Journal of AdvancedResearch in Science, Engineering and Technology

Vol. 5, Issue 7 , July 2018

Common fixed point theorems for a weak ** commuting pair of mappings

Uday Dolas

Department of Mathematics, C.S.A.Govt.P.G.College, SEHORE- M.P., INDIA

ABSTRACT: The concept of weak* commuting mappings was given by H.K. Pathak [3]. has generalized some results of B. Fisher [2] on fixed point theorem by using the concept to weak ** commuting mapping. We have two common fixed point theorems for three self maps of a complete metric space satisfying a rational inequality by using the concepts of weak ** commuting maps and rotativity of maps. We further extend the results of Diviccaro, Sessa and Fisher [1].

KEYWORDS: Weak ** commuting, Idempotent, Rotative, Complete metric space,

Some Definitions.

We begin with the following known definitions:-

Definition 1: Let (X,d) be a space and let S and I be mappings of X in to itself. We define the pair (S,I) to be weak ** commuting.

if $S(X) \subset I(X)$

and $d(S^2I^2x, I^2S^2X) \le d(S^2Ix, IS^2x) \le d(SI^2x, I^2Sx) \le d(SIx, ISx) \le d(S^2x, I^2)$

for all x in X.

It is obvious that two commuting mapping are also weak ** commuting, but two weak**commuting do not necessarily commute as shown in example 1 below.

Definition 2 : A map T:X \rightarrow X is called idempotent, if T² = T. We note that if mappings are idempotent, then our definition of weak ** commuting of pair (S,I) reduces to weak commuting of pair (S,I) defined by Sessa [5].

Definition 3 : The map T is called rotative w.r.t.I, If $d(Tx, I^2x) \le d(Ix, T^2x)$

for all x in X. clearly if T and I are idempotent maps, then definition is obvious.

Common fixed point theorems for a weak ** commuting pair of mappings.

In this section, we have some results on common fixed points for three self maps of a complete metric space satisfying a rational inequality by using the concepts of weak ** commuting maps and rotativity of maps. The following theorem generalizes the result of Diviccaro, Sessa and fisher [1]

Theorem 1 Let S, T and I be three mappings of a complete metric space (X,d) such that foa all x, y in X either

(I) $d(S^2x, T^2y) \le K' [d(I^2x, S^2x) + d(I^2y, T^2y)]$

International Journal of AdvancedResearch in Science, Engineering and Technology

Vol. 5, Issue 7 , July 2018

+K $\frac{[d(I^2x, S^2x).d(I^2y, T^2y) + d(I^2x, T^2y).d(I^2y, S^2x)]}{d(I^2x, S^2x) + d(I^2y, T^2y)}$

if d (I^2x, S^2x) + d $(I^2y, T^2y) \neq 0$, where K' < 1, and (K+K')<1/2, or

(II) $d(S^2x, T^2y) = 0$ if $d(I^2x, S^2x) + d(I^2y, T^2y) = 0$

Suppose that the range of I^2 contains the range of S^2 and T^2 . If either

- (a_1) I² is continuous, I is weak ** commuting with S and T is rotative w.r.t.I,
- (a₂) I² is continuous, I is weak ** commuting with T and S is rotative w.r.t.I,

(a₃) S² is continuous, S is weak ** commuting with I and T is rotative w.r.t.S,

(a₄) T² is continuous, T is weak ** commuting with I and S is rotative w.r.t.T

Then S, T and I have a unique common fixed point z. Further, z is the unique common fixed point of S and I and T and I.

Inspired by the result of Pathak H.K. and Sharma, Rekha [6], in the next Theorem, we generalize the Theorem of Rathore, M.S. and Dolas, Uday [4].

But firstly this definition follows:

Let R^+ be the set of non-negative real numbers and N be the set of positive integers. Let $\Psi : R^+ \to R^+$ be a continuous and increasing function on R^+ such that

 $\Psi(t) = 0$ it and only it t = 0.

Theorem 2.

Let S, T and I be the three self mappings of a complete metric space (X,d) satisfying the following condition:

(**IV**)
$$\Psi(d(T^2x, S^2y)) \le A. \max\{\Psi(d(I^2x, I^2y)), [1/2, \Psi(d(I^2x, I^2y)), \Psi(d(I^2y, T^2x))]^{1/2}\}$$

 $+ B.\{\Psi(d(I^2x,T^2x)) + \Psi(d(I^2y,\,S^2y))\}$

+ C.min. { $\Psi(d(I^2x, S^2y)), \Psi(d(I^2y, T^2x))$ }

 $\forall x,y \in X \text{ and reals } A,B,C \leq O \text{ with } (A + 2B + C) < 1.$

ISSN: 2350-0328 International Journal of AdvancedResearch in Science, Engineering and Technology

Vol. 5, Issue 7 , July 2018

Suppose that the range of I^2 contains the range of S^2 and T^2 . If either

	(a ₁)	I^2 is continuous, I is weak ** commuting with S and T is rotative w.r.t.I,
or	(a ₂)	I^2 is continuous, I is weak ** commuting with T and S is rotative w.r.t.I,
or	(a ₃)	S^2 is continuous, S is weak * * commuting with I and T is rotative w.r.t.S,
or	(a ₄)	T^2 is continuous, T is weak * * commuting with I and S is rotative w.r.t.T,

Then S,T and I have a common fixed point z, further z is a unique common fixed point of the pairs $\{S,I\}$, $\{T,I\}$ and $\{S,T\}$.

Proof: Let x_0 be an arbitrary point in X. Since the range of I^2 contains the range of S^2 . Let x_1 be a point in X such that $S^2x_0=I^2x_1$. Since the range of I^2 contains the range of T^2 , we can choose a point x_2 such that $T^2x_1 = I^2x_2$.

In general we have

 $S^2 x_{2n} = I^2 x_{2n+1} \text{ and } T^2 x_{2n+1} = I^2 x_{2n+2} \quad \text{for } n = 0, 1, 2 \$

Put $d_{2n-1} = d(T^2 x_{2n-1}, S^2 x_{2n})$ and $d_{2n} = d(S^2 x_{2n}, T^2 x_{2n+1})$ for n = 1, 2.....

Now we distinguish three cases.

Case I. Let $d_{2n-1} \neq 0$ and $d_{2n} \neq 0$, for n = 1, 2

Using inequality (IV), we have

 $\Psi(d(T^{2}X_{2n+1}, S^{2}x_{2n}))$

 \leq A. max { $\Psi(d(I^{2}x_{2n+1}, I^{2}x_{2n})), [1/2, \Psi(d(I^{2}x_{2n+1}, I^{2}x_{2n})), \Psi(d(I^{2}x_{2n}, T^{2}x_{2n+1}))]^{1/2}$ }

 $+ \ B. \ \{ \Psi(d(I^2x_{2n+1},T^2x_{2n+1})) + \Psi(d(I^2x_{2n}S^2x_{2n})) \}$

+ C. min{ $\Psi(d(I^2x_{2n+1}S^2x_{2n})), \Psi(d(I^2x_{2n'}T^2x_{2n+1}))$ }

i.e. $\Psi(d_{2n}) \leq A. \max \{ \Psi(d_{2n-1}), [1/2\Psi(d_{2n-1}), \Psi(d_{2n-1}+d_{2n})]^{1/2} \}$

+ B. $\{\Psi(d_{2n}) + \Psi(d_{2n-1})\}$ + C.min. $\{\Psi(0), \Psi(d_{2n-1}+d_{2n})\}$

i.e. $\Psi(d_{2n}) \leq A. \max \{ \Psi(d_{2n-1}), [1/2.\Psi(d_{2n-1}).\Psi(d_{2n-1}+d_{2n})]^{1/2} \}$

+ B. { $\Psi(d_{2n}) + \Psi(d_{2n-1})$ }.

Suppose that $.\Psi(d_{2n-1}) < (d_{2n}).$

International Journal of AdvancedResearch in Science, Engineering and Technology

Vol. 5, Issue 7 , July 2018

Then we have

 $\Psi(d_{2n}) \leq A. \max \{ \Psi(d_{2n}), [1/2, \Psi(d_{2n}), (\Psi(d_{2n}) + \Psi(d_{2n}))]^{1/2} \}$

+ B. { $\Psi(d_{2n}) + \Psi(d_{2n})$ }

So that $\Psi(d_{2n}) \leq A$. $\Psi(d_{2n}) + 2B$. $\Psi(d_{2n})$.

i.e. $\Psi(d_{2n}) \leq (A+2B)$. $\Psi(d_{2n})$.

Therefore $\Psi(d_{2n}) < \Psi(d_{2n})$, since (A+2B) < 1.

So that our assumption is wrong, then we have

$$\Psi(\mathbf{d}_{2n}) \leq \Psi(\mathbf{d}_{2n-1}).$$

Simirlarly we have

$$\Psi(\mathbf{d}_{2n-1}) \leq \Psi(\mathbf{d}_{2n-2}).$$

Thus we have $\Psi(d_{n-1}) \leq (d_n)$, $\forall n = 1, 2$

Since Ψ is an increasing function, we conclude that $\{d_n\}$ is a decreasing sequence of non-negative real numbers.

 $\label{eq:constraint} \text{Thus } d_{2n} \leq d_{2n-1} \leq \ d_{2n-2} \leq \hspace{-.5cm} \qquad \forall \ n=1,2 \ ...$

It follows that the sequences

(4)
$$\{S^2x_{0,}T^2x_1, S^2x_2, \dots, T^2x_{2n-1}, S^2x_{2n}, T^2x_{2n+1}, \dots, S^2x_{2n+1}, \dots, S^2$$

is a Cauchy sequence in the complete metric space X and so has a limit w in X, Hence the sub- sequences

{
$$S^2x_{2n}$$
} = { I^2x_{2n+1} } and { T^2x_{2n-1} }={ I^2x_{2n} }

converge to the point we because they are subsequences of the sequence (4)

Suppose first of all that I^2 is continuous, then sequences $\{I^4x_{2n}\}$ and $\{I^2S^2x_{2n}\}$ converge to a point I^2w .

if I weak ** commutes with S, we have

 $d(S^{2}I^{2}x_{2n}, I^{2}w) \le d(S^{2}I^{2}x_{2n}, I^{2}S^{2}x_{2n}) + d(I^{2}S^{2}x_{2n}, I^{2}w)$

International Journal of AdvancedResearch in Science, Engineering and Technology

ISSN: 2350-0328

Vol. 5, Issue 7 , July 2018

 $\leq d(S^2{}_{2n}\!,\!I^2x_{2n}) + d(I^2S^2x_{2n}\!,\!I^2w)$

which implies, on letting a tends to infinity that the sequence $\{S^2I^2x_{2n}\}$ also converge to I^2w .

We now claim that $T^2w = I^2w$. suppose not.

then we have $d(I^2w, T^2w) > 0$ using inequality (IV), we obtain

 $\Psi(d(T^2w, S^2I^2x_{2n}))$

 $\leq A. \max{\{\Psi d(I^2 w, I^4 x_{2n})), [\frac{1}{2}.\Psi (d(I^2 w, I^4 x_{2n})).\Psi (d(I^4 x_{2n}, T^2 w,))]^{1/2}}\}$

+ B. { $\Psi(d(I^2w, T^2w,) + \Psi(d(I^4x_{2n}, S^2I^2x_{2n}))$ }

+C.min{ $\Psi(d(I^2w, S^2I^2x_{2n})), \Psi(d(I^4x_{2n}, T^2w))$ }

i.e. $\Psi(d(T^2w, I^2w))$

 $\leq A. \max \{ \Psi d(I^2 w, I^2 w)), [\frac{1}{2} \Psi (d(I^2 w, I^2 w)), \Psi (d(I^2 w, T^2 w,))]^{1/2} \}$

+ B. { $\Psi(d(I^2w, T^2w,) + \Psi(d(I^2w, I^2w)))$ }

+C.min{ $\Psi(d(I^2w, I^2w)), \Psi(d(I^2w, T^2w))$ }

That is $\Psi(d(T^2w, I^2w) \leq B, \Psi(d(I^2w, T^2w)))$.

Therefore $\Psi(d(T^2w, I^2w) \leq \Psi(d(I^2w, T^2w)))$, Since B<1.

which is a contradiction and so our assumption is wrong. Hence have

 $T^2 w_= I^2 w.$

Now suppose that $S^2w \neq T^2w$. Then using inequality (IV), we have

 $\Psi(d(T^{2}w, S^{2}w)) \leq A.max\{\Psi d(I^{2}w, I^{4}w)), [\frac{1}{2}.\Psi(d(I^{2}w, I^{2}w)). \ \Psi(d(I^{2}w, T^{2}w,))]^{1/2}\}$

+ B. { $\Psi(d(I^2w, T^2w) + \Psi(d(I^2w, S^2w))$ }

+ C.min{ $\Psi(d(I^2w, S^2w)), \Psi(d(I^2w, T^2w))$ }

i.e.

$$\Psi(d(T^2w, S^2w)) \leq B.\Psi(d(T^2w, S^2w))$$

International Journal of AdvancedResearch in Science, Engineering and Technology

ISSN: 2350-0328

Vol. 5, Issue 7 , July 2018

Therefore $\Psi(d(T^2w, S^2w)) \le \Psi(d(T^2w, S^2w))$, since B<1.

This is a contradiction and so our supposition is wrong and hence

$$S^2w = T^2w$$

Thus

 $I^2w = S^2w = T^2w$

A similar conclusion is achieved if I weak ** commutes with T.

Let us now suppose that S^2 is continuous instead of I^2 . Then the sequences $\{S^4x_{2n}\}$ and $\{S^2I^2x_{2n}\}$ converse to the point S^2w . Now if S weak ** commutes with I, we have the sequence $\{I^2S^2x_{2n}\}$ also converges to S^2w .

Since the range of I^2 contains the range of S^2 , there exist a point w',

such that $I^2 w = S^2 w$.

Then if $T^2w' \neq S^2w = I^2w'$, we have by inequality (IV) we have

 $\Psi (d(T^2w', S^4w_{2n})) = \Psi(d(T^2w', S^2S^2x_{2n}))$

 $\leq A. \max\{\Psi d(I^2w, I^2S^2x_{2n})), [1/2, \Psi(d(I^2w, I^2S^2x_{2n})), \Psi(d(I^2S^2x_{2n}, T^2w'))]^{1/2}\}$

+ B. { Ψ (d(I²w', T²w')+ Ψ (d(I²S²x_{2n}, S⁴x_{2n}))}

+C.min{ $\Psi(d(I^2w', S^4x_{2n})), \Psi(d(I^2S^2x_{2n}, T^2w'))$ }

i.e.

 $\Psi(d(T^{2}w', S^{2}w)) \leq A. \max \{\Psi d(S^{2}w, S^{2}w)), [\frac{1}{2}.\Psi(d(S^{2}w, I^{2}w)). \Psi(d(S^{2}w, T^{2}w'))]^{1/2}\}$

+ B. { $\Psi d(S^2w', T^2w')$ },+ $\Psi (d(S^2w, S^2w))$ }

+ C.min { $\Psi d(S^2w, S^2w)$)+ $\Psi (d(S^2w, T^2w'))$ }

I.e. $\Psi(d(T^2w', S^2w)) \le B. \Psi d(S^2w, T^2w')),$

Therefore $\Psi(d(T^2w', S^2w)) \le B. \Psi d(S^2w, T^2w'))$, since B < 1

Thus we arrive at a contradiction

Hence $S^2w = T^2w' = I^2w'$.

Now suppose that $S^2 w \neq T^2 w' = I^2 w$. Then by inequality (IV), we have $\Psi(d(T^2 w', S^2 w')) \leq A$. max { $\Psi d(I^2 w', I^2 w')$, [½. $\Psi(d(I^2 w', I^2 w'))$. $\Psi(d(I^2 w', T^2 w'))$]^{1/2}}

International Journal of AdvancedResearch in Science, Engineering and Technology

Vol. 5, Issue 7 , July 2018

+ B. { $\Psi(d(I^2w', T^2w',) + \Psi(d(I^2w', S^2w'))$ }

+C.min{ $\Psi(d(I^2w', S^2w')), \Psi(d(I^2w', T^2w'))$ }

i.e.

 $\Psi(d(T^2w', S^2w')) \le B.\Psi(d(T^2w', S^2w'))$

Therefore $\Psi(d(T^2w', S^2w')) \leq \Psi(d(T^2w', S^2w'))$, since B<1.

This is a contradiction and so $I^2w = S^2w = T^2w$.

A similar conclusion is obtained if one assume that T² is continuous and T is weak ** commuting with I.

<u>Case II.</u> Let $d_{2n-1} = 0$ for some n.

Then $I^2 x_{2n} = T^2 x_{2n-1} = S^2 x_{2n} = I^2 x_{2n+1}$ We claim $I^2 x_{2n} = T^2 x_{2n}$,

Otherwise $d(I^2x_{2n}, T^2x_{2n}) > 0$. By inequality (IV), we have

 $0 < \Psi(d(T^2x_{2n}, I^2x_{2n}) = \Psi(d(T^2x_{2n}, S^2x_{2n}))$

< A.max. $\Psi(d(I^{2}x_{2n}, I^{2}x_{2n})), [\frac{1}{2}, \Psi(d(I^{2}x_{2n}, I^{2}x_{2n}), \Psi(d(I^{2}x_{2n}, T^{2}x_{2n}))]^{1/2})$

+ B. { $\Psi(d(I^2x_{2n}, T^2x_{2n}) + \Psi(d(I^2x_{2n}, S^2x_{2n})))$ }

+ C.min { $\Psi(d(I^2x_{2n}, S^2x_{2n}) + \Psi(d(I^2x_{2n}, T^2x_{2n}))$ }

i.e.
$$0 < B \Psi(d(T^2x_{2n}, I^2x_{2n}) \le B. \Psi(d(I^2x_{2n}, T^2x_{2n}))$$

i.e. (1-B) $\Psi(d(T^2x_{2n}, I^2x_{2n}) \le 0.$

This implies $I^2 x_{2n} = T^2 x_{2n} = S^2 x_{2n}$

<u>CaseIII.</u> Let $d_{2n} = 0$ for some n.

Then $I^2 x_{2n+1} = S^2 x_{2n} = T^2 x_{2n+1}$ We claim $I^2 x_{2n+1} = S^2 x_{2n+1}$,

Otherwise $d(I^2x_{2n+1}, S^2x_{2n+1}) > O$.

By inequality (IV), we have

 $0 < \Psi(d(I^2 x_{2n+1}, S^2 x_{2n+1})) = \Psi(d(T^2 x_{2n+1}, S^2 x_{2n-1}))$

International Journal of AdvancedResearch in Science, Engineering and Technology

Vol. 5, Issue 7 , July 2018

 $< A.max. \ \Psi(d(I^2x_{2n+1}, I^2x_{2n+1})), [\frac{1}{2} \ \Psi(d(I^2x_{2n+1}, I^2x_{2n+1}). \ \Psi(d(I^2x_{2n+1}, T^2x_{2n+1})]^{1/2})$

 $+ \ B. \ \{ \Psi(d(I^2x_{2n+1}, \, T^2x_{2n+1}) + \Psi(d(I^2x_{2n+1}, \, S^2x_{2n+1})) \}$

+ C.min { $\Psi(d(I^2x_{2n+1}, S^2x_{2n+1})), \Psi(d(I^2x_{2n+1}, T^2x_{2n+1}))$ }

i.e.
$$0 < \Psi(d(I^2 x_{2n+1}, S^2 x_{2n+1})) \le B. \Psi(d(I^2 x_{2n+1}, S^2 x_{2n-1}))$$

i.e. (1-B). $\Psi(d(I^2x_{2n+1}, S^2x_{2n+1})) \leq 0.$

Since B < 1, we have

 $I^2 x_{2n+1} = S^2 x_{2n+1} = T^2 x_{2n+1}$

Thus we see that in all cases, there exists a point w such that

 $I^2w = S^2w = T^2w = z$ (say).

Again if I weak ** commutes with S, we have

 $d(S^2Iw, IS^2w) \le d(SI^2w, I^2Sw) \le d(SIw, ISw) \le d(S^2w, I^2w) = 0$

which implies that

 $S^{2}Iw = IS^{2}w$, $SI^{2}w = I^{2}Sw$, SIw = ISw and so $I^{2}Sw = S^{3}w$.

Now we claim Iz =z. If not, then $IS^2w \neq T^2w$.

Therefore

$$\Psi (d (IS^2 w, T^2 w)) = \Psi(d (T^2 w, S^2 w))$$

 \leq A. max { $\Psi d(I^2w, I^3w)$), [$\frac{1}{2}$. $\Psi (d(I^2w, I^3w))$. $\Psi (d(I^3w, T^2w))$]^{1/2}}

+ B. { $\Psi d(I^2 w, T^2 w)$ },+ $\Psi (d(I^3 w, S^2 I w))$ }

+ C.min { $\Psi d(I^2 w, S^2 I w)$), $\Psi (d(I^3 w, T^2 w))$ }

i.e. $\Psi(d(z,Iz)) \leq A. \max \{\Psi d(z,Iz)\}, [\frac{1}{2}.\Psi(d(z,Iz)), \Psi(d(Iz, z))]^{1/2}\}$

+ B. {
$$\Psi d(z,z)$$
},+ $\Psi (d(Iz, Iz))$ }

International Journal of AdvancedResearch in Science, Engineering and Technology

Vol. 5, Issue 7 , July 2018

+ C.min { $\Psi d(z, Iz)$ },+ $\Psi (d(Iz, z)$ }

i.e. $\Psi d(z,Iz) > (A+C). \Psi d(z,Iz))$

which is a contradiction, since (A+C) < 1

Hence $IS^2w = T^2W$ i.e. Iz = z Thus z is a fixed point of I.

Now we need to prove that $T^2z=z$ suppose $T^2z \neq z$. then we get

 $\Psi (d(T^2z, z) = \Psi(d(T^2z, S^2w))$

$$\leq A. \max \{ \Psi d(I^{2}z, I^{2}w)), [\frac{1}{2} \Psi (d(I^{2}z, I^{2}w)). \Psi (d(I^{2}w, T^{2}z))]^{1/2} \}$$

+ B. { $\Psi (d(I^{2}z, T^{2}z,) + \Psi (d(I^{2}w, S^{2}w)))$ }
+ C.min{ $\Psi (d(I^{2}z, S^{2}w)), \Psi (d(I^{2}w, T^{2}w))$ }

i.e.

$$\Psi(d(T^2z, z)) \le A. \max \{\Psi d(z, z)), 0\}, + B. [\Psi(d(z, T^2w))+0\}$$

+ C.min{ Ψ (d(z, z)), Ψ (d(z, T²z))}, Since I²z= z

Thus, $\Psi\left(d(T^{2}z,z)\right) \leq B. \ \Psi\left(d(z,T^{2}z),\right.$

Which is a contradiction, B < 1.

Therefore $T^2z = z$.

Now using the rotativity of T. w. r. t. I (or w.r.t. S) we have

$$d(Tz, z) = d(Tz, I^2Z) \le d(Iz, T^2z) = d(z, z) = 0$$

Hence Tz = z, i, e, z is a fixed point of T.

Suppose $Sz \neq z$, then

 $\Psi(d(Sz, z)) = \Psi(d(SI^2w, z)) = \Psi(d(I^2Sw, z))$

$$= \Psi(d(S^3w, T^2w))$$

 $= \Psi(d(T^2w_S^2Sw))$

International Journal of AdvancedResearch in Science, Engineering and Technology

Vol. 5, Issue 7 , July 2018

 $\leq A. \max \{ \Psi d(I^2 w, I^2 S w)), [\frac{1}{2} \Psi (d(I^2 w, I^2 S w)). \Psi (d(I^2 S w, T^2 w))]^{1/2} \}$

+ B. { $\Psi(d(I^2w, T^2w) + \Psi(d(I^2Sw, S^3w))$ }

+C.min{ Ψ (d(I²w, S³w)), Ψ (d(I²Sw, T²w))}

i.e.

 $\Psi(d(Sz, z)) \leq A. \max \{\Psi d(z, Sz)), [\frac{1}{2}.\Psi(d(z, Sz)). \Psi(d(Sz, z))]^{\frac{1}{2}}\}$

+ B. { $\Psi d(z,z)$ },+ $\Psi (d(Sz, Sz)$ }

+ C.min { $\Psi d(z, Sz)$ }, $\Psi (d(Sz, z))$ }

So that $\Psi(d(Sz,z)) \leq (A+C)$. $\Psi(d(Sz,z))$,

which is a contradiction, since (A+C) > 1.

Hence Sz = z.i.e.z is a fixed point of S.

Thus z is a common fixed point of I, S and T if I weak ** commutes with S. Similarty we can prove that z is a common fixed point of I, S and T, if is weak ** commutes with T and S is rotative w.r. to I.

If we assume that S is weak ** commutes with I, then as above we can

show that, Iz = z = Sz and $T^2z = z$

If T is rotative w.r. to S, we have

 $\Psi\left(d(Tz,z)\right) = \Psi(d(Tz,S^2z)) \le \Psi(d(Sz,T^2z)) = \Psi(d(z,z)) = 0$

Hence Tz=z. Thus z is a common fixed point of I, S and T if S is weak ** commuting with I and T rotative w.r.t.S.

Proceeding in the same way, we can show that z is a common fixed point of I,S and T if T is weak ** commuting with I and S is rotative w.r. to T.

If z' is another common fixed point of S and I then we get

 $I^2z'=z'$ and $S^2z'=\!z'$ if $S^2z'\neq I^2z$,

 $\Psi(d(I^2z, S^2z')) = \Psi(d(z, S^2z'))$

then

International Journal of AdvancedResearch in Science, Engineering and Technology

Vol. 5, Issue 7 , July 2018

 $= \Psi(d(T^2w, S^2z'))$

 $\leq A. \text{ max. } \{ \Psi(I^2w, I^2z')), [^{1}\!/_{2.} \Psi(d(I^2w, I^2z')). \Psi(d(I^2z', T^2w))]^{1/2} \}$

+ B. { $\Psi(d(I^2w, T^2w)) + \Psi(d(I^2z', S^2z'))$ }

+ C.min. { $\Psi(d(I^2w, S^2z')), \Psi(d(I^2z', T^2w))$ }

i.e. $\Psi(d(z,z')) \le A$. max. { $\Psi(d(z,z')), [^{1}/_{2}, \Psi(d(z',z)), \Psi(d(z',z))]^{1/2}$ }

+ B.{ $\Psi(d(z,z)) + \Psi(d(z',z))$ }

+ C. min. { $\Psi(d(z,z')), \Psi(d(z',z)).$

That is $\Psi(d(z', z) \le (A+C) \cdot \Psi(d(z,z')).$

This is a contradiction, since (A+C) < 1. So that $S^2z' = I^2z$ i.e. z' = z,

Hence z is a unique common fixed point of S and I.

We can prove similarly that z is a unique common fixed point of I and T and also for S and T.

Assuming S = T on X, we have the following Corollary.

Corollary

Let S and I be mappings of a complete metric space (X,d) in to itself such that for x, y in X,

(V) $\Psi(d(S^2x, S^2y)) \le A. \max\{\Psi(d(I^2x, I^2y)), [1/2, \Psi(d(I^2x, I^2y), \Psi(d(I^2y, S^2x))]^{1/2}\}$

+ B. { $\Psi(d(I^2x, S^2x)) + \Psi(d(I^2y, S^2y))$ }

+ C. min.{ $\Psi(d(I^2x, S^2y)), \Psi(d(I^2y, S^2x))$ },

where (A+2B+C) < 1, for $A,B,C \ge 0$.

If the range of I^2 contains the range of S^2 , if I weak ** commutes with S and if S^2 or I^2 is continuous, then S and I have a unique common fixed point.

International Journal of AdvancedResearch in Science, Engineering and Technology

Vol. 5, Issue 7 , July 2018

BIBLIOGRAPHY

[1]	Diviccaro, M.L., Seesa, S and Fisher, B.	:	Common fixed point theorems with a rational inequality" Bull. Inst. Math. Acad.
			Sinica, 14 (1986), 277-285,
[2]	Fisher, B.	:	"Theorems on fixed point of mappings sat- isfying a rational inequality"
			Comment. Math. Univ. Corolinae, 19, (1978) 37-46.
[3]	Pathak H.K.	:	Weak ** commuting mappings and fixed point, Indian J. pure Appl. Math 17 (2),
			(1986) 201.211.
[4]	Rathore, M.S. and Dolas, U	:	"Some fixed point theorems, in complete metric space" Jnanabha. 25 (1995), 73-
			76
[5]	Sessa,S.	:	"On a weak commutativity condition of mappings in fixed point considerations"
			Publ. Inst. math. 32 (46) (1982), 149-153.
[6]	Pathak H.K. and Sharma, Rekha.	:	"A note on fixed point theorems of Khan, Swaleh and Sessa". The Mathematics
			Education, Vol. XXVIII, No.3, Sept. 1994, 151-157.
[7]	El Saved Ahmed M		Common Fixed Point Theorems for m week** Commuting Mannings in 2 metric
			Spaces Applied Mathematics & Information Sciences 1(2)(2007), 157-171 — An International Journal °c 2007 Dixie W Publishing Corporation, U. S. A.