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ABSTRACT: The concept of weak* commuting mappings was given by H.K. Pathak [3]. has generalized some 

results of B. Fisher [2] on fixed point theorem by using the concept to   weak ** commuting mapping. We have two 

common fixed point theorems for three self maps of a complete metric space satisfying a rational inequality by using 

the concepts of weak ** commuting maps and rotativity of maps. We further extend the results of Diviccaro, Sessa and 

Fisher [1]. 
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Some Definitions. 

We begin with the following known definitions:- 

Definition 1:  Let (X,d) be a space and let S and I be mappings of X in to itself. We define the pair (S,I) to 

be weak ** commuting. 

if  S(X)⊂I(X) 

and d(S
2
I

2
x, I

2
S

2
X) ≤ d(S

2
Ix, IS

2
x) ≤ d(SI

2
x, I

2
Sx) ≤ d (SIx, ISx) ≤ d(S

2
x, I

2
)  

for all x in X. 

It is obvious that two commuting mapping are also weak ** commuting, but two weak**commuting do not 

necessarily commute as shown in exampole 1 below. 

Definition 2 : A map T:X→X is called idempotent, if T
2
 = T. We note that if mappings are idempotent, then our 

definition of weak ** commuting of pair (S,I) reduces to weak commuting of pair (S,I) defined by Sessa [5]. 

Definition 3 :  The map T is called rotative w.r.t.I, If d(Tx, I
2
x ) ≤ d(Ix, T

2
x)  

for all x in X. clearly if T and I are idempotent maps, then definition is obvious. 

Common fixed point theorems for a weak ** commuting pair of mappings. 

  In this section, we have some results on common fixed points for three self maps of a complete 

metric space satisfying a rational inequality by using the concepts of weak ** commuting maps and rotativity of maps. 

The following theorem generalizes the result of Diviccaro, Sessa and fisher [1] 

Theorem 1 Let S, T and I be three mappings of a complete metric space (X,d) such that foa all x, y in X either  

(I) d(S
2
x, T

2
y) ≤ K' [d(I

2
x, S

2
x) + d (I

2
y, T

2
y)] 
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+K 
 d I2x, S2x . d (I2y, T2y) +  d  I2x, T2y . d (I2y, S2x) 

d I2 x, S2x + d  I2y, T2y 
 

     if d (I
2
x, S

2
x)+ d (I

2
y, T

2
y) ≠ 0, where K' < 1, and (K+K')<1/2, or 

(II) d(S
2
x, T

2
y) = 0 if d (I

2
x, S

2
x)+ d (I

2
y, T

2
y)=0 

 

Suppose that the range of I
2
 contains the range of S

2
 and T

2 
. If either 

(a1) I
2
 is continuous, I is weak ** commuting with S and T is rotative w.r.t.I, 

(a2) I
2
 is continuous, I is weak ** commuting with T and S is rotative w.r.t.I, 

(a3) S
2
 is continuous, S is weak ** commuting with I and T is rotative w.r.t.S, 

(a4) T
2
 is continuous, T is weak ** commuting with I and S is rotative w.r.t.T 

 Then S, T and I have a unique common fixed point z. Further, z is the unique common fixed point of S and I 

and T and I. 

 Inspired by the result of Pathak H.K. and Sharma, Rekha [6], in the next Theorem, we generalize the Theorem 

of Rathore, M.S. and Dolas, Uday [4].  

 But firstly this definition follows:  

 Let R
+
 be the set of non-negative real numbers and N be the set of positive integers. Let Ψ : R

+ 
→ R

+
 be a 

continuous and increasing function on R
+
 such that  

 Ψ(t) = 0 it and only it t = 0.  

Theorem 2. 

 Let S, T and I be the three self mappings of a complete metric space (X,d) satisfying the following condition:  

(IV)  Ψ (d(T
2
x,S

2
y)) < A. max.{Ψ(d(I

2
x,I

2
y)), [1/2. Ψ(d(I

2
x,I

2
y)) Ψ(d(I

2
y,T

2
x))]

1/2
} 

 + B.{Ψ(d(I
2
x,T

2
x)) + Ψ(d(I

2
y, S

2
y))}   

 + C.min.{Ψ(d(I
2
x,S

2
y)), Ψ(d(I

2
y,T

2
x))}  

 ∀ x,y∈ X and reals A,B,C < O with (A + 2B+ C) < 1.  
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 Suppose that the range of I
2
 contains the range of S

2
 and T

2
. If either  

 (a1) I
2
 is continuous, I is weak ** commuting with S and T is rotative  w.r.t.I, 

or (a2)  I
2
 is continuous, I is weak ** commuting with T and S is rotative w.r.t.I,  

or  (a3) S
2
 is continuous, S is weak * * commuting with I and T is rotative w.r.t.S,  

or (a4) T
2
 is continuous, T is weak * * commuting with I and S is rotative w.r.t.T, 

 Then S,T and I have a common fixed point z, further z is a unique common fixed point of the pairs {S,I} , {T,I} 

and {S,T}.   

Proof: Let xo be an arbitrary point in X. Since the range of I
2
 contains the range of S

2
. Let x1 be a point in X such that 

S
2
x0=I

2
x1. Since the range of I

2
 contains the range of T

2
, we can choose a point x2

 
such that T

2
x1 = I

2
x2.  

 In general we have  

 S
2
x2n = I

2
x2n+1 and T

2
x2n+1 =I

2
x2n+2 for n = 0,1,2 ................... 

 Put d2n-1
 
= d(T

2
x2n-1,S

2
x2n) and d2n

 
= d(S

2
x2n,T

2
x2n+1) for n = 1, 2............ 

 Now we distinguish three cases.  

Case I.  Let d2n-1≠ 0 and d2n ≠ 0, for n = 1,2 .................  

  Using inequality (IV), we have 

 Ψ(d(T
2
X2n+1, S

2
x2n)) 

 < A. max { Ψ(d(I
2
x2n+1,I

2
 x2n)), [1/2. Ψ(d(I

2
x2n+1,I

2
x2n)). Ψ(d(I

2
x2n,T

2
x2n+1))]

1/2
} 

 + B. {Ψ(d(I
2
x2n+1,T

2
x2n+1)) + Ψ(d(I

2
x2n'S

2
x2n))} 

 + C. min{Ψ(d(I
2
x2n+1'S

2
x2n)), Ψ(d(I

2
x2n' T

2
x2n+1))} 

i.e.  Ψ(d2n) <  A. max. {Ψ(d2n-1), [1/2Ψ(d2n-1). Ψ (d2n-1+d2n)]
1/2

} 

  + B. {Ψ(d2n) + Ψ(d2n-1)} + C.min. {Ψ(0), Ψ(d2n-1+ d2n)}  

i.e.  Ψ(d2n) <  A. max. {Ψ(d2n-1), [1/2.Ψ(d2n-1).Ψ(d2n-1+d2n)]
1/2

}  

  + B. {Ψ(d2n) + Ψ(d2n-1)}. 

 Suppose that .Ψ(d2n-1) < (d2n).  
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 Then we have  

 Ψ(d2n) < A. max { Ψ(d2n), [1/2. Ψ(d2n).(Ψ(d2n) + Ψ(d2n))]
1/2

} 

  + B. {Ψ(d2n) + Ψ(d2n)}  

 So that Ψ(d2n) <  A. Ψ(d2n) + 2B. Ψ(d2n). 

 i.e.  Ψ(d2n) < (A+2B). Ψ(d2n).  

 Therefore Ψ(d2n) < Ψ(d2n).,  since (A+2B) < 1.  

 So that our assumption is wrong, then we have 

  Ψ(d2n) < Ψ(d2n-1). 

Simirlarly we have  

 Ψ(d2n-1) < Ψ(d2n-2).
  

 Thus we have Ψ  dn−1 ≤  dn ,                    ∀ n = 1,2 ............. 

 Since Ψ is an increasing function, we conclude that {dn} is a decreasing sequence of non-negative real 

numbers.  

 Thus d2n ≤ d2n−1 ≤  d2n−2 ≤............... ∀ n = 1,2 ............. 

 It follows that the sequences  

(4) {S
2
x0, T

2
x1, S

2
x2,......................... T

2
x2n-1, S

2
x2n, T

2
x2n+1..................} 

 is a Cauchy sequence in the complete metric space X and so has a limit w in X,   Hence the sub- sequences  

 { S
2
x2n} = {I

2
x2n+1} and {T

2
x2n-1}={I

2
x2n} 

 converge to the point we because they are subsequences of the sequence (4)  

 Suppose first of all that I
2
 is continuous, then sequences {I

4
x2n} and {I

2
S

2
x2n} converge to a point I

2
w.  

 if I weak ** commutes with S, we have  

 d(S
2
I

2
x2n,I

2
w)≤ d(S

2
I

2
x2n,I

2
S

2
x2n) + d(I

2
S

2
x2n,I

2
w) 
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   ≤ d(S
2

2n,I
2
x2n) + d(I

2
S

2
x2n,I

2
w) 

 which implies, on letting a tends to infinity that the sequence {S
2
I

2
x2n} also converge to I

2
w. 

 We now claim that T
2
w = I

2
w. suppose not.  

 then we have d(I
2
w, T

2
w) > 0 using inequality (IV), we obtain  

 Ψ(d(T
2
w, S

2
I

2
x2n)) 

 ≤A. max{Ψd(I
2
w, I

4
x2n)), [½.Ψ(d(I

2
w, I

4
x2n)). Ψ(d(I

4
x2n, T

2
w,))]

1/2
} 

 + B. {Ψ(d(I
2
w, T

2
w,)+ Ψ(d(I

4
x2n, S

2
I

2
x2n))} 

 +C.min{Ψ(d(I
2
w, S

2
I

2
x2n)), Ψ(d(I

4
x2n, T

2
w))}  

i.e.  Ψ(d(T
2
w,I

2
w)) 

 ≤A. max {Ψd(I
2
w, I

2
w)), [½.Ψ (d(I

2
w, I

2
w)). Ψ(d(I

2
w, T

2
w,))]

1/2
} 

 + B. {Ψ(d(I
2
w, T

2
w,)+ Ψ(d(I

2
w, I

2
w))} 

 +C.min{Ψ(d(I
2
w, I

2
w)), Ψ(d(I

2
w, T

2
w))}  

 That is Ψ(d(T
2
w, I

2
w) ≤ B. Ψ(d(I

2
w, T

2
w)). 

 Therefore Ψ(d(T
2
w, I

2
w) ≤  Ψ(d(I

2
w, T

2
w)), Since B<1.  

 which is a contradiction and so our assumption is wrong. Hence have  

T
2
w= I

2
w. 

  Now suppose that S
2
w ≠ T

2
w. Then using inequality (IV), we have  

Ψ(d(T
2
w, S

2
w)) ≤ A.max{Ψd(I

2
w, I

4
w)), [½.Ψ(d(I

2
w, I

2
w)). Ψ(d(I

2
w, T

2
w,))]

1/2
} 

   + B. {Ψ(d(I
2
w, T

2
w)+ Ψ(d(I

2
w, S

2
w))} 

     + C.min{Ψ(d(I
2
w, S

2
w)), Ψ(d(I

2
w, T

2
w))}  

i.e.   

  Ψ(d(T
2
w, S

2
w)) ≤ B.Ψ(d(T

2
w, S

2
w)) 
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Therefore Ψ(d(T
2
w, S

2
w))≤ Ψ(d(T

2
w, S

2
w)), since B<1.  

 This is a contradiction and so our supposition is wrong and hence  

  S
2
w = T

2
w  

Thus  I
2
w = S

2
w = T

2
w 

 A similar conclusion is achieved if I weak ** commutes with T.  

 Let us now suppose that S
2
 is continuous instead of I

2
. Then the sequences {S

4
x2n} and {S

2
I

2
x2n} converse to 

the point S
2
w. Now if S weak ** commutes with I, we have the sequence {I

2
S

2
x2n}  also converges to S

2
w. 

 Since the range of I
2
 contains the range of S

2
, there exist a point w',  

 such that   I
2
w

'
 = S

2
w.  

 Then if T
2
w

'
 ≠ S

2
w = I

2
w', we have by inequality (IV) we have  

Ψ (d(T
2
w', S

4
w2n)) = Ψ(d(T

2
w', S

2
S

2
x2n)) 

 ≤A. max{Ψd(I
2
w,I

2
S

2
x2n)), [½.Ψ(d(I

2
w,I

2
S

2
x2n)). Ψ(d(I

2
S

2
x2n, T

2
w'))]

1/2
} 

 + B. {Ψ (d(I
2
w', T

2
w')+ Ψ(d(I

2
S

2
x2n, S

4
x2n))} 

 +C.min{ Ψ(d(I
2
w

'
, S

4
x2n)), Ψ(d(I

2
S

2
x2n, T

2
w'))}  

i.e.  

Ψ(d(T
2
w', S

2
w))  ≤        A. max {Ψd(S

2
w, S

2
w)), [½.Ψ(d(S

2
w,I

2
w)). Ψ(d(S

2
w,T

2
w'))]

1/2
} 

   + B. {Ψd(S
2
w', T

2
w')),+Ψ(d(S

2
w, S

2
w))} 

   + C.min {Ψd(S
2
w, S

2
w))+Ψ(d(S

2
w,T

2
w'))} 

 I.e. Ψ (d(T
2
w', S

2
w)) ≤ B. Ψd(S

2
w, T

2
w')),   

 Therefore Ψ(d(T
2
w', S

2
w)) ≤ B. Ψd(S

2
w, T

2
w')), since B < 1  

 Thus we arrive at a contradiction  

 Hence S
2
w = T

2
w' = I

2
w'. 

 Now suppose that S
2
w ≠ T

2
w

'
 = I

2
w. Then by inequality (IV), we have                             

Ψ(d(T
2
w', S

2
w

'
)) ≤ A. max {Ψd(I

2
w', I

2
w')), [½.Ψ(d(I

2
w', I

2
w')). Ψ(d(I

2
w', T

2
w'))]

1/2
} 
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  + B. {Ψ(d(I
2
w', T

2
w',)+ Ψ(d(I

2
w', S

2
w'))} 

  +C.min{Ψ(d(I
2
w', S

2
w')), Ψ (d(I

2
w', T

2
w'))}  

i.e.   

 Ψ(d(T
2
w

'
, S

2
w

'
)) ≤ B.Ψ(d(T

2
w

'
, S

2
w

'
)) 

 Therefore Ψ(d(T
2
w', S

2
w')) ≤ Ψ(d(T

2
w', S

2
w')), since B<1.  

 This is a contradiction and so I
2
w

'
 = S

2
w

'
 = T

2
w

'
.  

 A similar conclusion is obtained if one assume that T
2
 is continuous and T is weak ** commuting with I.  

Case II.  Let d2n-1 = 0 for some n.  

  Then I
2
x2n = T

2
x2n-1= S

2
x2n  = I

2
x2n+1 We claim I

2
x2n = T

2
x2n, 

  Otherwise d(I
2
x2n , T

2
x2n) > 0. By inequality (IV), we have  

0< Ψ(d(T
2
x2n, I

2
x2n)= Ψ(d(T

2
x2n, S

2
x2n)) 

 < A.max. Ψ(d(I
2
x2n, I

2
x2n)),[½, Ψ(d(I

2
x2n, I

2
x2n). Ψ(d(I

2
x2n, T

2
x2n))]

1/2
) 

 + B. {Ψ(d(I
2
x2n, T

2
x2n) + Ψ(d(I

2
x2n, S

2
x2n))} 

 + C.min {Ψ(d(I
2
x2n, S

2
x2n) + Ψ(d(I

2
x2n, T

2
x2n))} 

i.e. 0 < B Ψ(d(T
2
x2n, I

2
x2n) ≤ B. Ψ(d(I

2
x2n, T

2
x2n) 

i.e.  (1-B) Ψ(d(T
2
x2n, I

2
x2n) ≤0.  

 This implies I
2
x2n= T

2
x2n = S

2
x2n 

CaseIII. Let d2n = 0 for some n.  

  Then I
2
x2n+1 = S

2
x2n= T

2
x2n+1  We claim I

2
x2n+1 = S

2
x2n+1, 

  Otherwise d(I
2
x2n+1 , S

2
x2n+1) > O.  

  By inequality (IV), we have  

0< Ψ(d(I
2
x2n+1, S

2
x2n+1))= Ψ(d(T

2
x2n+1, S

2
x2n-1)) 
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 < A.max. Ψ(d(I
2
x2n+1, I

2
x2n+1)),[½ Ψ(d(I

2
x2n+1, I

2
x2n+1). Ψ(d(I

2
x2n+1, T

2
x2n+1)]

1/2
) 

 + B. {Ψ(d(I
2
x2n+1, T

2
x2n+1) + Ψ(d(I

2
x2n+1, S

2
x2n+1))} 

 + C.min {Ψ(d(I
2
x2n+1, S

2
x2n+1)), Ψ(d(I

2
x2n+1, T

2
x2n+1))} 

i.e. 0<  Ψ(d(I
2
x2n+1, S

2
x2n+1)) ≤ B. Ψ(d(I

2
x2n+1, S

2
x2n-1)) 

i.e.  (1-B). Ψ(d(I
2
x2n+1, S

2
x2n+1)) ≤0.  

 Since B < 1, we have  

 I
2
x2n+1 = S

2
x2n+1 = T

2
x2n+1  

Thus we see that in all cases, there exists a point w such that  

 I
2
w = S

2
w = T

2
w = z (say). 

Again if I weak ** commutes with S, we have  

 d(S
2
Iw, IS

2
w) ≤ d (SI

2
w, I

2
Sw)  ≤ d (SIw, ISw) ≤ d(S

2
w, I

2
w) = 0  

 which implies that  

 S
2
Iw= IS

2
w, SI

2
w =I

2
Sw, SIw = ISw and  so I

2
Sw = S

3
w. 

 Now we claim Iz  =z. If not, then IS
2
w≠ T

2
w. 

Therefore  

Ψ (d (IS
2
w, T

2
w)) = Ψ(d (T

2
w, S

2
w)) 

 ≤A. max {Ψd(I
2
w,I

3
w)), [½.Ψ(d(I

2
w,I

3
w)). Ψ(d(I

3
w,T

2
w))]

1/2
} 

 + B. {Ψd(I
2
w, T

2
w)),+Ψ(d(I

3
w, S

2
Iw))} 

 + C.min {Ψd(I
2
w, S

2
Iw)),Ψ(d(I

3
w, T

2
w))} 

i.e. Ψ(d(z,Iz))  ≤  A. max {Ψd(z,Iz)), [½.Ψ (d(z, Iz)). Ψ (d(Iz,  z
'
))]

1/2
} 

   + B. {Ψd(z,z)),+Ψ(d(Iz, Iz))} 

http://www.ijarset.com/


   
  

 
ISSN: 2350-0328 

International Journal of AdvancedResearch in Science, 

Engineering and Technology 

Vol. 5, Issue 7 , July 2018 

 

Copyright to IJARSET                                                  www.ijarset.com                                                       6346 

 

 

   + C.min {Ψd(z, Iz)),+Ψ(d(Iz, z))} 

i.e.  Ψd(z,Iz)) < (A+C). Ψd(z,Iz))  

 which is a contradiction, since (A+C) < 1  

 Hence IS
2
w = T

2
W i.e. Iz = z                                Thus z is a fixed point of I. 

 Now we need to prove that T
2
z= z suppose T

2
z ≠ z. then we get  

Ψ (d(T
2
z, z) = Ψ(d(T

2
z, S

2
w)) 

   ≤ A. max {Ψd(I
2
z, I

2
w)), [½.Ψ(d(I

2
z, I

2
w)). Ψ(d(I

2
w,T

2
z))]

1/2
} 

  + B. {Ψ(d(I
2
z, T

2
z,)+ Ψ(d(I

2
w, S

2
w))} 

  + C.min{Ψ(d(I
2
z, S

2
w)), Ψ(d(I

2
w, T

2
w))}  

i.e.    

 Ψ(d(T
2
z, z)) ≤ A. max {Ψd(z, z)),0}, + B. [Ψ (d(z, T

2
w))+0} 

            + C.min{Ψ (d(z, z)), Ψ (d(z, T
2
z))},  Since I

2
z= z   

 Thus,  Ψ (d(T
2
z, z)) ≤ B.  Ψ (d(z, T

2
z), 

 Which is a contradiction, B < 1.  

 Therefore T
2
z = z. 

 Now using the rotativity of T. w. r. t. I (or w.r.t. S) we have  

  d(Tz, z)= d(Tz, I
2
Z) ≤  d(Iz, T

2
z) = d(z,z) = 0 

 Hence Tz = z, i, e, z is a fixed point of T.  

 Suppose Sz ≠ z, then  

Ψ(d(Sz, z)) = Ψ(d(SI
2
w, z)) = Ψ(d(I

2
Sw,z)) 

  = Ψ(d(S
3
w, T

2
w)) 

  = Ψ(d(T
2
w, S

2
Sw)) 
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 ≤A. max {Ψd(I
2
w, I

2
Sw)), [½.Ψ(d(I

2
w, I

2
Sw)). Ψ(d(I

2
Sw,T

2
w))]

1/2
} 

 + B. {Ψ(d(I
2
w, T

2
w)+ Ψ(d(I

2
Sw, S

3
w))} 

 +C.min{ Ψ (d(I
2
w, S

3
w)), Ψ(d(I

2
Sw, T

2
w))}  

i.e.  

Ψ(d(Sz, z)) ≤A. max {Ψd(z, Sz)), [½.Ψ(d(z, Sz)). Ψ(d(Sz, z))]
1/2

} 

   + B. {Ψd(z,z)),+Ψ(d(Sz, Sz))} 

   + C.min {Ψd(z, Sz)), Ψ(d(Sz, z))} 

So that  Ψ(d (Sz,z)) <  (A+C). Ψ(d(Sz,z)),   

 which is a contradiction, since (A+C) > 1. 

 Hence Sz = z.i.e.z is a fixed point of S. 

 Thus z is a common fixed point of I, S and T if I weak ** commutes with S. Similarty we  can prove that z is  

a common fixed point of I, S and T, if is weak ** commutes with T and S is rotative w.r. to I. 

 If we assume that S is weak ** commutes with I, then as above we can 

 show that, Iz = z = Sz and T
2
z= z 

If T is rotative w.r. to S, we have  

Ψ (d(Tz,z)) = Ψ(d(Tz,S
2
z)) ≤ Ψ(d(Sz,T

2
z))= Ψ(d(z,z)) = 0 

Hence Tz=z. Thus z is a common fixed point of I, S and T if S is weak ** commuting with I and T rotative 

w.r.t.S. 

Proceeding in the same way, we can show that z is a common fixed point of I,S and T if T is weak ** 

commuting with I and S is rotative w.r. to T. 

If z' is another common fixed point of S and I then we get  

I
2
z' = z' and S

2
z' =z' if S

2
z' ≠ I

2
z , 

then  Ψ(d(I
2
z, S

2
z')) = Ψ(d(z,S

2
z'))  
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  = Ψ(d(T
2
w, S

2
z')) 

  ≤ A. max. { Ψ(I
2
w, I

2
z')), [

1
/2. Ψ(d(I

2
w,I

2
z')). Ψ(d(I

2
z',T

2
w))]

1/2
} 

  + B. { Ψ(d(I
2
w, T

2
w)) + Ψ(d(I

2
z', S

2
z'))} 

  + C.min. { Ψ(d(I
2
w, S

2
z')), Ψ(d(I

2
z', T

2
w))} 

i.e.  Ψ(d(z,z')) ≤ A. max.{Ψ(d(z,z')), [
1
/2. Ψ(d(z',z)). Ψ(d(z',z))]

1/2
} 

 + B.{ Ψ(d(z,z)) + Ψ(d(z',z))} 

  + C. min. { Ψ(d(z,z')), Ψ(d(z',z)). 

That is  Ψ (d(z', z) ≤  (A+C) . Ψ(d(z,z')). 

This is a contradiction, since (A+C) <1. So that S
2
z' =I

2
z  i.e. z' =z, 

 Hence z is a unique common fixed point of S and I. 

 We can prove similarly that z is a unique common fixed point of I and T and also for S and T. 

 Assuming S = T on X, we have the following Corollary. 

Corollary  

Let S and I be mappings of a complete metric space (X,d) in to itself      such    that for x, y in X, 

(V) Ψ(d(S
2
x,S

2
y)) < A. max.{Ψ(d(I

2
x,I

2
y)), [

1
/2. Ψ(d(I

2
x,I

2
y). Ψ(d(I

2
y,S

2
x))]

1/2
} 

    + B. {Ψ(d(I
2
x, S

2
x)) + Ψ(d(I

2
y, S

2
y))} 

    + C. min.{ Ψ(d(I
2
x, S

2
y)), Ψ(d(I

2
y,S

2
x))}, 

  where (A+2B+C) < 1, for A,B,C > 0. 

  If the range of I
2
 contains the range of S

2
, if I weak ** commutes with S and if S

2
 or I

2
 is continuous, 

then S and I have a unique common fixed point. 
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