ISSN: 2350-0328
International Journal of AdvancedResearch in Science,
Engineering and Technology
Vol. 5, Issue 7, July 2018

Common fixed point theorems for a weak **
commuting pair of mappings

Uday Dolas
Department of Mathematics, C.S.A.Govt.P.G.College, SEHORE- M.P., INDIA

ABSTRACT: The concept of weak* commuting mappings was given by H.K. Pathak [3]. has generalized some
results of B. Fisher [2] on fixed point theorem by using the concept to weak ** commuting mapping. We have two
common fixed point theorems for three self maps of a complete metric space satisfying a rational inequality by using
the concepts of weak ** commuting maps and rotativity of maps. We further extend the results of Diviccaro, Sessa and
Fisher [1].
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We begin with the following known definitions:-

Definition 1: Let (X,d) be a space and let S and | be mappings of X in to itself. We define the pair (S,I) to
be weak ** commuting.

if S(X)cI(X)
and d(S%1%x, 178%X) < d(S?Ix, 1S%x) < d(SI’, 1°Sx) < d (SIx, ISx) < d(S*x, I?)
for all x in X.

It is obvious that two commuting mapping are also weak ** commuting, but two weak**commuting do not
necessarily commute as shown in exampole 1 below.

Definition2: A map T:X—X is called idempotent, if T2 = T. We note that if mappings are idempotent, then our
definition of weak ** commuting of pair (S,l) reduces to weak commuting of pair (S,I) defined by Sessa [5].

Definition 3 : The map T is called rotative w.r.t.I, If d(Tx, 1°x ) < d(Ix, Tx)
for all x in X. clearly if T and I are idempotent maps, then definition is obvious.

Common fixed point theorems for a weak ** commuting pair of mappings.

In this section, we have some results on common fixed points for three self maps of a complete
metric space satisfying a rational inequality by using the concepts of weak ** commuting maps and rotativity of maps.
The following theorem generalizes the result of Diviccaro, Sessa and fisher [1]

Theorem 1 Let S, T and | be three mappings of a complete metric space (X,d) such that foa all x, y in X either

0 d(S°, T?y) <K' [d(I*, $%) +d (IPy, T*)]
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K [d(1%x,S%x).d (I%y, T?y) + d (I?x, T?y).d (I%y, S?x)]
d(12x,5%x) + d (I2y, T2y)

if d (1%, S%)+ d (1%, T%) # 0, where K' < 1, and (K+K")<1/2, or

(1) d(S%, T?) = 0 if d (1%, $?X)+ d (1%y, T?)=0

Suppose that the range of 12 contains the range of S? and T2. If either
a,) 17 is continuous, | is wea commuting wi an is rotative w.r.t.l,
12 t | K ** t th Sand T is rotat t.l
a,) 17 is continuous, | is wea commuting wi and S is rotative w.r.t.1,
12 t | K ** t th T and S is rotat t.l
(as) S is continuous, S is weak ** commuting with | and T is rotative w.r.t.S,
(as) T?is continuous, T is weak ** commuting with | and S is rotative w.r.t.T

Then S, T and | have a unique common fixed point z. Further, z is the unique common fixed point of S and |
and T and I.

Inspired by the result of Pathak H.K. and Sharma, Rekha [6], in the next Theorem, we generalize the Theorem
of Rathore, M.S. and Dolas, Uday [4].

But firstly this definition follows:

Let R* be the set of non-negative real numbers and N be the set of positive integers. Let ¥ : R* — R" be a

continuous and increasing function on R* such that
Y(t)=0itand onlyitt=0.

Theorem 2.

Let S, T and | be the three self mappings of a complete metric space (X,d) satisfying the following condition:
(V) W (d(T%,5%)) < A max.{P(d(1%,1%)), [1/2. Y(d(1%%, 1)) 21y, T))]"%}

+ BLY((1%,T?X)) + P(d(1%, Sy))}

+ C.min{¥(d(1%,S%)), Y(d(1%y, T))}

V Xx,y€ X and reals A,B,C <O with (A+ 2B+ C) < 1.
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Suppose that the range of 12 contains the range of S? and T2 If either

(a1) I is continuous, | is weak ** commuting with S and T is rotative w.r.t.I,
or (@) I is continuous, | is weak ** commuting with T and S is rotative w.r.t.I,
or (as) S?is continuous, S is weak * * commuting with | and T is rotative w.r.t.S,
or (a4) T2 is continuous, T is weak * * commuting with I and S is rotative w.r.t.T,
Then S, T and I have a common fixed point z, further z is a uniqgue common fixed point of the pairs {S,1} , {T,I}
and {S,T}.
Proof: Let x, be an arbitrary point in X. Since the range of 12 contains the range of S% Let x; be a point in X such that
S?Xo=1°x,. Since the range of I contains the range of T2, we can choose a point X, such that T?x; = 1%X,.
In general we have
S%%on = 1%ons1 aNd T%opet =1%%onez FOrN=0,1,2 coovovereae.
Put donq = d(T%X0.1,5%%20) and oy = d(S?Xan T?Xoney) forn=1, 2............
Now we distinguish three cases.
Casel. Letdy,#0and dy, #0, forn=1,2 .................
Using inequality (IV), we have
\P(d(TZXZnﬂ, SZXZn))
< A max { P(d(1%ons1,1? Xan)), [1/2. P(d(1PXons1 1%an)). P(A(13%on T%ons1)) ]2}
+ B. {P(d(1Xans1, TXons1)) + P(A(1Xon'S*Xon))}
+ C. min{W(d(1%an1S%2n)), W(A(1%ar T %on+1))}
ie. P(da) < A max. {¥(don.1), [1/2¥(dzn1). ¥ (dona+don)] 2}
+B. {¥(d2n) + ¥(d201)} + C.min. {¥(0), ¥(d2n1+ dan)}
ie. P(dy) < A max. {¥(don.1), [1/2.%(don-1). ¥ (dan1+don)] 2}

+ B. {¥(dzn) + ¥(dzn-1)}-

Suppose that . ¥(dzn.1) < (dan).
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Then we have
P(dan) < A. max { ¥(dzn), [1/2. ¥(dan).(¥(dzn) + ¥(d20))]"}
+ B. {¥(dy,) + P(dn)}
So that W(dz,) < A. ¥(dy,) + 2B. ¥(day).
i.e. P(dy) < (A+2B). P(day).
Therefore ¥(d,,) < ¥(dy)., since (A+2B) < 1.
So that our assumption is wrong, then we have
W(dan) < ¥(d2na)-
Simirlarly we have
W(dan1) < ¥(dan2)
Thus we have ¥ (d,,_;) < (d,), Vvn=12......

Since ¥ is an increasing function, we conclude that {d,} is a decreasing sequence of non-negative real

numbers.
Thus dy, < dz,—1 < dypp S, vn=12......
It follows that the sequences
(4) {S%o0, T?X1, SXzperveererrmsrierronne. T%on-1, SXam T Xons1eeeeereeeeneenn. }
is a Cauchy sequence in the complete metric space X and so has a limit w in X, Hence the sub- sequences
{ San} = {11} and {T?Xon.13={1"Xn}
converge to the point we because they are subsequences of the sequence (4)
Suppose first of all that I? is continuous, then sequences {I*x,n} and {1°S*x,,} converge to a point 12w
if | weak ** commutes with S, we have

d(S?1%zn, 1W) < d(S%1%X o0, 128%%20) + d(128%% g0, 12W)
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< d(S%n1%%an) + d(17S%X g0, 1°W)
which implies, on letting a tends to infinity that the sequence {S?1?X,,} also converge to 1°w.
We now claim that T?w = I°w. suppose not.
then we have d(1°w, T?w) > 0 using inequality (1V), we obtain
P(d(TAw, S%1%X,y))
<A. max{¥d(1’w, 1°Xzy)), [¥2.®(d(12W, 1X0)). P(d(1*X2n, T2W,))]2}
+ B. {P(d(1PW T2w,)+ P(d(1*Xzn S?1%%20))}
+C.min{¥(d(1°w, S?1%%,,)), P(d(I*Xzn, T?W))}
W(d(T?w,1°w))
<A. max {¥d(I°w, I’w)), [£.¥ (d(1*w, 12w)). P(d(1Pw, T?w,))]"*}
+ B. {P(d(Pw Tw,)+ w(d(I’w 1°w))}
+C.min{w(d(I’w 1°w)), Y(d(1?w, T?w))}
That is P(d(T?w 1°'w) < B.¥(d(I°w T?w)).
Therefore W(d(T?w 1°w) < W(d(I°w, T?w)), Since B<1.

which is a contradiction and so our assumption is wrong. Hence have

T2w- 12w,

Now suppose that S*w # T?w. Then using inequality (1V), we have

Y(d(T?w S?w)) < Amax{¥d(I>w, I'w)), [v2.@(d(1?w, I°W)). ¥(d(1*w, T?w,))]"*}

+ B. {P(d(1*w T?w)+ P(d(1*w S?w))}

+ C.min{¥(d(12w, Sw)), T(d(1Pw T?w))}

P(d(T?w, Sw)) < B.P(d(T?w, S*w))
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Therefore P(d(TAw S*w))< P(d(T>w S°w)), since B<1.
This is a contradiction and so our supposition is wrong and hence
S?w = T?w
Thus I°w = S’w = T?w

A similar conclusion is achieved if | weak ** commutes with T.
Let us now suppose that S? is continuous instead of 1% Then the sequences {S*x,,} and {S?I?x,,} converse to

the point S?w. Now if S weak ** commutes with I, we have the sequence {I°S?x,,} also converges to S?w.

Since the range of 1° contains the range of S?, there exist a point w',

such that 12w = S’w.
Then if T>w # S?w = 1w, we have by inequality (1V) we have
¥ (d(T?W' S*Wan)) = P(d(TAW' S°S?X,,))
<A. max{Pd(1’w,1%5Xz,)), [%.¥(d(1°W,1S?X,,)). W(d(17S%z, T2W))]M2}
+ B. {¥ (d(1°W', T2W)+ P(d(1°S*n S*%20))}
+C.min{ P(d(I°'W. $*Xzn)), P(d(1°S*zn, TW))}

i.e.

PATW, SW)) < A max {Pd(S*w, SW)), [Y. ¥(d(S?w,12w)). ¥ (d(S*w, T?w"))]¥%}
+ B. {¥d(S*W', T2W")),+¥(d(S*w, S°w))}
+ C.min {¥d(S?w, S*w))+¥(d(S*w, T?w))}
Le. ¥ (d(T°w', S?w)) < B. wd(S°w, T?w)),
Therefore W(d(T?w', S°w)) < B.Wd(S*w, T?w), since B < 1
Thus we arrive at a contradiction

Hence S?w = T?w' = I*w".
Now suppose that S?w # T°w = 1°w. Then by inequality (IV), we have
PA(TW Sw)) < A. max {Pd(IPw', 1Pw)), [Y2.2d(1Pw, 1Pw)). w(d(Pw' T2w))]*%}
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+B. {Pd(PW' T?w' )+ P(d(I*'w' S°w))}

+C.min{P(d(1Pw' S2w)), ¥ ([d(IPw' T2w))}

W(d(TW S*w)) < B.#(d(TAW, S2w))
Therefore W(d(T?w' S°w")) < W(d(T?w' S?w')), since B<1.

This is a contradiction and so 1°w = S?w = T?w.
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A similar conclusion is obtained if one assume that T2 is continuous and T is weak ** commuting with I.

Case Il. Let d,,.; =0 for some n.
Then 12X, = T2Xon1= SXon = 12Xones We claim 1%Xo, = T2,
Otherwise d(1%Xzn , T?Xzn) > 0. By inequality (1V), we have
0< P(A(Tan, 1Xan)= P(A(T?X2n, SXan))
< Amax. P(d(1Pan, 1%Xn)), [Y2, (Ad(1PXan, 1PXan). P(A(1Xan, T2%0))]Y?)
+ B. {(d(1%Xzn, Tz0) + P(d(1PX2n, S°Xan))}
+ C.min {¥(d(1Xan, San) + P(A(1Pan, T0))}
i.e. 0 < B W(d(T*an, 1%an) < B. W(d(1X2n, T?X20)
ie. (1-B) W(d(T*Xzn, 1%%2n) <O0.
This implies 1%Xz,= T%on = SXan
Caselll. Let d,, = 0 for some n.
Then 1%on+1 = S?Xon= T?Xoner We claim 1%Xons1 = SXons1,
Otherwise d(1%Xon+1 , S*Xons1) > O.
By inequality (1V), we have
0< W(d(1*Xzns1, SXans1))= P(A(T*Xane1, SPXzn-1))
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< Amax. P(d(1Xone1, 1Xone1)), [%2 PA1Xane1, PXaner). PA0Xome, TXone1)]7?)
+ B. {P(d(1%Xans1, TXane1) + P(A(1X 2051, S™X2n+1)) }
+ C.min {¥(d(1%%zns1, SXons1)), PA(1Xans1, TXons1))}
ie. 0< W(d(1®Xzn+1, SXans1)) < B. W(d(1Xans1, S*X2n-1))
i.e. (1-B). W(d(1*Xzns1, S*Xzn41)) <O.
Since B < 1, we have
12041 = SXone1 = TXone1
Thus we see that in all cases, there exists a point w such that
12w = S?w = T?w = z (say).
Again if | weak ** commutes with S, we have
d(S%lw, 1S?w) < d (SI°w, 1Sw) < d (Slw, I1Sw) < d(S?w, I°w) = 0
which implies that
S’lw= 1S?w, SI°w =12Sw, Slw = ISw and so 1°Sw = S®w.
Now we claim 1z =z. If not, then 1S?w+ T°w.
Therefore
¥ (d (IS?w, T?W)) = ¥(d (T?w, S*w))
<A. max {¥d(1°w, I*w)), [P (d(1?w, *w)). Y(d(I*w, T?w))]"*}
+ B. {wd(I*w, T?w)),+P(d(I*w, S?lw))}
+ C.min {¥d(1?w, S?lw)),¥(d(I*w, T?w))}
i.e. W(d(z,1z)) < A. max {¥d(z,12)), [%.¥ (d(z, 12)). ¥ (d(Iz, z))]"*}}

+ B. {¥d(z,2)),+¥(d(Iz, 12))}
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+ C.min {¥d(z, 12)),+¥(d(lz, 2))}
ie. ¥d(z,12)) < (A+C). ¥d(z,12))
which is a contradiction, since (A+C) <1
Hence IS?w = T°W ie. Iz=z Thus z is a fixed point of I.
Now we need to prove that T?z= z suppose T2z # z. then we get
¥ (d(T?z, z) = P(d(T’z, S*w))
< A. max {¥d(I%z, 1'w)), [¥.®(d(I?z, 1*w)). ¥(d(1°w T?Z2))]"*}
+ B. {¥(d(1%z, T?z,)+ ¥(d(I*w S*w))}

+ C.min{'¥(d(1%z, S°w)), P(d(1*w T°w))}

¥(d(T?z, 2)) < A. max {¥d(z, 2)),0}, + B. [¥ (d(z, T?w))+0}
+C.min{¥ (d(z 2)), ¥ (d(z, T°2))}, Since 1’z= z
Thus, ¥ (d(T?%z, z)) < B. ¥ (d(z, T%2),
Which is a contradiction, B < 1.
Therefore T’z = z.
Now using the rotativity of T. w. r. t. | (or w.r.t. S) we have
d(Tz, 2)=d(Tz, 1°Z) < d(Iz, T’2) =d(z,z) = 0
Hence Tz =1z, 1, e, z is a fixed point of T.
Suppose Sz # z, then
¥(d(Sz, 2)) = P(d(SI°w 2)) = P(d(I°Swz))
= P(d(S*w T?w))
= P(d(T?w, S*Sw))
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<A. max {¥d(I°w, 1?Sw)), [¥%.(d(Iw, 1?Sw)). P(d(1*Sw T?w))] ¥}
+ B. {21, TPw)+ P(d(1’Sw, S°w))}
+C.min{ ¥ (d(1w S*w)), ¥(d(1°Sw T?w))}
ie.
¥(d(Sz, z)) <A. max {¥d(z, Sz)), [v2.¥(d(z, Sz)). ¥(d(Sz, 2))]"*}
+ B. {¥d(z,2)),+¥(d(Sz, Sz))}
+ C.min {¥d(z, Sz)), ¥(d(Sz, 2))}
So that ‘P(d (Sz,z)) < (A+C). ¥(d(Sz,2)),
which is a contradiction, since (A+C) > 1.

Hence Sz = z.i.e.z is a fixed point of S.

Thus z is a common fixed point of I, S and T if | weak ** commutes with S. Similarty we can prove that z is

a common fixed point of I, Sand T, if is weak ** commutes with T and S is rotative w.r. to I.
If we assume that S is weak ** commutes with I, then as above we can

show that, 1z = z = Sz and T?z=z
If T is rotative w.r. to S, we have
¥ (d(Tz,2)) = P(d(Tz,S%)) < ¥(d(Sz,T?2))= ¥(d(z,2)) = 0

Hence Tz=z. Thus z is a common fixed point of I, S and T if S is weak ** commuting with | and T rotative

w.r.t.S.

Proceeding in the same way, we can show that z is a common fixed point of I,S and T if T is weak **

commuting with | and S is rotative w.r. to T.
If z' is another common fixed point of S and | then we get
I’z = 7' and S°z' =7' if S%2' # I’z

then ¥(d(1%z, $°2)) = ¥(d(z,5°2")
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= P(d(T?w, $°2Y)
< A. max. { Y(I°w, 1°2")), ['/,, ¥ (d(1’w,1%2)). Y(d(1%Z", T?w))]*}
+ B. { P(d(1?w, T?w)) + ¥(d(1%z', S°2'))}
+ C.min. { ¥(d(I>w, $%2)), Y(d(1°z', T?w))}
i.e. ¥(d(zz)) <A. max.{¥(d(z.2)), [, ¥(d(z',2)). ¥(d(z',2))]"*}
+B.{¥(d(z,2)) + ¥(d(z',2))}
+ C. min. { ¥(d(z,2), ¥(d(z',2)).
That is VY (d(z, z) < (A+C) . P(d(z,2)).
This is a contradiction, since (A+C) <1. So that $°z' =1’z i.e. Z' =z,
Hence z is a unique common fixed point of Sand I.
We can prove similarly that z is a unique common fixed point of I and T and also for Sand T.
Assuming S =T on X, we have the following Corollary.
Corollary
Let S and | be mappings of a complete metric space (X,d) in to itself ~ such that for x, y in X,
(V) P(d(S%%,S%)) < A. max.{¥(d(1%x,1%)), [Mo. (d(1%X,1%). P(d(1%y,5%X))]*}
+ B. {P(d(1’x, S%)) + P(d(1%, S%))}
+ C. min.{ Y(d(1%, %)), ¥(d(1%,5°X))},

where (A+2B+C) < 1, for A,B,C > 0.

If the range of 1% contains the range of S?, if | weak ** commutes with S and if S? or 1% is continuous,

then S and | have a unique common fixed point.
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