International Journal of AdvancedResearch in Science, Engineering and Technology
 Vol. 5, Issue 7 , July 2018

Common fixed point theorems for a weak ** commuting pair of mappings

Uday Dolas
Department of Mathematics, C.S.A.Govt.P.G.College,SEHORE- M.P., INDIA

Abstract

The concept of weak* commuting mappings was given by H.K. Pathak [3]. has generalized some results of B. Fisher [2] on fixed point theorem by using the concept to weak ** commuting mapping. We have two common fixed point theorems for three self maps of a complete metric space satisfying a rational inequality by using the concepts of weak ${ }^{* *}$ commuting maps and rotativity of maps. We further extend the results of Diviccaro, Sessa and Fisher [1].

KEYWORDS: Weak ** commuting, Idempotent, Rotative, Complete metric space,

Some Definitions.

We begin with the following known definitions:-

Definition 1:

Let (X,d) be a space and let S and I be mappings of X in to itself. We define the pair (S,I) to be weak ** commuting.
if $\quad \mathrm{S}(\mathrm{X}) \subset \mathrm{I}(\mathrm{X})$
and $d\left(S^{2} I^{2} x, I^{2} S^{2} X\right) \leq d\left(S^{2} I x, S^{2} x\right) \leq d\left(S^{2} x, I^{2} S x\right) \leq d(S I x, I S x) \leq d\left(S^{2} x, I^{2}\right)$
for all x in X .

It is obvious that two commuting mapping are also weak ${ }^{* *}$ commuting, but two weak**commuting do not necessarily commute as shown in exampole 1 below.

Definition 2: A map $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ is called idempotent, if $\mathrm{T}^{2}=\mathrm{T}$. We note that if mappings are idempotent, then our definition of weak $* *$ commuting of pair (S,I) reduces to weak commuting of pair (S,I) defined by Sessa [5].

Definition 3 :
The map T is called rotative w.r.t.I, If $d\left(T x, I^{2} x\right) \leq d\left(I x, T^{2} x\right)$
for all x in X . clearly if T and I are idempotent maps, then definition is obvious.
Common fixed point theorems for a weak ${ }^{* *}$ commuting pair of mappings.

In this section, we have some results on common fixed points for three self maps of a complete metric space satisfying a rational inequality by using the concepts of weak $* *$ commuting maps and rotativity of maps. The following theorem generalizes the result of Diviccaro, Sessa and fisher [1]

Theorem 1 Let S, T and I be three mappings of a complete metric space (X, d) such that foa all x, y in X either

$$
\begin{equation*}
d\left(S^{2} x, T^{2} y\right) \leq K^{\prime}\left[d\left(I^{2} x, S^{2} x\right)+d\left(I^{2} y, T^{2} y\right)\right] \tag{I}
\end{equation*}
$$

ISSN: 2350-0328

International Journal of AdvancedResearch in Science, Engineering and Technology
 Vol. 5, Issue 7 , July 2018

$$
+K \frac{\left[\mathrm{~d}\left(\mathrm{I}^{2} \mathrm{x}, \mathrm{~S}^{2} \mathrm{x}\right) \cdot \mathrm{d}\left(\mathrm{I}^{2} \mathrm{y}, \mathrm{~T}^{2} \mathrm{y}\right)+\mathrm{d}\left(\mathrm{I}^{2} \mathrm{x}, \mathrm{~T}^{2} \mathrm{y}\right) \cdot \mathrm{d}\left(\mathrm{I}^{2} \mathrm{y}, \mathrm{~S}^{2} \mathrm{x}\right)\right]}{\mathrm{d}\left(\mathrm{I}^{2} \mathrm{x}, \mathrm{~S}^{2} \mathrm{x}\right)+\mathrm{d}\left(\mathrm{I}^{2} \mathrm{y}, \mathrm{~T}^{2} \mathrm{y}\right)}
$$

if $d\left(I^{2} x, S^{2} x\right)+d\left(I^{2} y, T^{2} y\right) \neq 0$, where $\mathrm{K}^{\prime}<1$, and $\left(K+K^{\prime}\right)<1 / 2$, or
(II)

$$
d\left(S^{2} x, T^{2} y\right)=0 \text { if } d\left(I^{2} x, S^{2} x\right)+d\left(I^{2} y, T^{2} y\right)=0
$$

Suppose that the range of I^{2} contains the range of S^{2} and T^{2}. If either
$\left(a_{1}\right) I^{2}$ is continuous, I is weak ** commuting with S and T is rotative w.r.t.I,
$\left(a_{2}\right) I^{2}$ is continuous, I is weak ** commuting with T and S is rotative w.r.t.I,
$\left(a_{3}\right) S^{2}$ is continuous, S is weak ${ }^{* *}$ commuting with I and T is rotative w.r.t. S,
$\left(\mathrm{a}_{4}\right) \mathrm{T}^{2}$ is continuous, T is weak ${ }^{* *}$ commuting with I and S is rotative w.r.t. T

Then S, T and I have a unique common fixed point z. Further, z is the unique common fixed point of S and I and T and I

Inspired by the result of Pathak H.K. and Sharma, Rekha [6], in the next Theorem, we generalize the Theorem of Rathore, M.S. and Dolas, Uday [4].

But firstly this definition follows:

Let R^{+}be the set of non-negative real numbers and N be the set of positive integers. Let $\Psi: \mathrm{R}^{+} \rightarrow \mathrm{R}^{+}$be a continuous and increasing function on R^{+}such that
$\Psi(\mathrm{t})=0$ it and only it $\mathrm{t}=0$.

Theorem 2

Let S, T and I be the three self mappings of a complete metric space (X, d) satisfying the following condition:
(IV)

```
\Psi(d(T}\mp@subsup{\textrm{T}}{}{2}\textrm{x},\mp@subsup{\textrm{S}}{}{2}\textrm{y}))\leq\textrm{A}.\operatorname{max.}{\Psi(\textrm{d}(\mp@subsup{\textrm{I}}{}{2}\textrm{x},\mp@subsup{\textrm{I}}{}{2}\textrm{y}))
+ B. {\Psi(d(I'r x, T
+C.min.{\Psi(d(I I
\forallx,y\inX
```

$\left.\left[1 / 2 . \Psi\left(d\left(I^{2} x, I^{2} y\right)\right) \Psi\left(d\left(I^{2} y, T^{2} x\right)\right)\right]^{1 / 2}\right\}$

ISSN: 2350-0328

International Journal of AdvancedResearch in Science, Engineering and Technology
 Vol. 5, Issue 7 , July 2018

Suppose that the range of I^{2} contains the range of S^{2} and T^{2}. If either
(a_{1}) $\quad \mathrm{I}^{2}$ is continuous, I is weak $* *$ commuting with S and T is rotative w.r.t.I,
$\left(\mathrm{a}_{2}\right) \quad \mathrm{I}^{2}$ is continuous, I is weak $* *$ commuting with T and S is rotative w.r.t.I,
$\left(a_{3}\right) \quad S^{2}$ is continuous, S is weak ** commuting with I and T is rotative w.r.t.S,
(a) T^{2} is continuous, T is weak $* *$ commuting with I and S is rotative w.r.t.T,

Then S, T and I have a common fixed point z , further z is a unique common fixed point of the pairs $\{\mathrm{S}, \mathrm{I}\},\{\mathrm{T}, \mathrm{I}\}$ and $\{\mathrm{S}, \mathrm{T}\}$.

Proof: Let x_{0} be an arbitrary point in X. Since the range of I^{2} contains the range of S^{2}. Let x_{1} be a point in X such that $S^{2} x_{0}=I^{2} x_{1}$. Since the range of I^{2} contains the range of T^{2}, we can choose a point x_{2} such that $T^{2} x_{1}=I^{2} x_{2}$.

In general we have
$\mathrm{S}^{2} \mathrm{X}_{2 \mathrm{n}}=\mathrm{I}^{2} \mathrm{x}_{2 \mathrm{n}+1}$ and $\mathrm{T}^{2} \mathrm{X}_{2 \mathrm{n}+1}=\mathrm{I}^{2} \mathrm{x}_{2 \mathrm{n}+2}$ for $\mathrm{n}=0,1,2$ \qquad

Put $\mathrm{d}_{2 \mathrm{n}-1}=\mathrm{d}\left(\mathrm{T}^{2} \mathrm{x}_{2 \mathrm{n}-1}, \mathrm{~S}^{2} \mathrm{x}_{2 \mathrm{n}}\right)$ and $\mathrm{d}_{2 \mathrm{n}}=\mathrm{d}\left(\mathrm{S}^{2} \mathrm{x}_{2 \mathrm{n}}, \mathrm{T}^{2} \mathrm{x}_{2 \mathrm{n}+1}\right)$ for $\mathrm{n}=1,2 \ldots \ldots \ldots .$.
Now we distinguish three cases.
Case I. Let $\mathrm{d}_{2 \mathrm{n}-1} \neq 0$ and $\mathrm{d}_{2 \mathrm{n}} \neq 0$, for $\mathrm{n}=1,2$ \qquad
Using inequality (IV), we have
$\Psi\left(\mathrm{d}\left(\mathrm{T}^{2} \mathrm{X}_{2 \mathrm{n}+1}, \mathrm{~S}^{2} \mathrm{x}_{2 \mathrm{n}}\right)\right)$
\leq A. $\max \left\{\Psi\left(\mathrm{d}^{2}\left(\mathrm{I}^{2} \mathrm{x}_{2 \mathrm{n}+1}, \mathrm{I}^{2} \mathrm{x}_{2 \mathrm{n}}\right)\right),\left[1 / 2 . \Psi\left(\mathrm{d}\left(\mathrm{I}^{2} \mathrm{x}_{2 \mathrm{n}+1}, \mathrm{I}^{2} \mathrm{x}_{2 \mathrm{n}}\right)\right) . \Psi\left(\mathrm{d}\left(\mathrm{I}^{2} \mathrm{x}_{2 \mathrm{n}}, \mathrm{T}^{2} \mathrm{x}_{2 \mathrm{n}+1}\right)\right)\right]^{1 / 2}\right\}$

+ B. $\left\{\Psi\left(\mathrm{d}\left(\mathrm{I}^{2} \mathbf{x}_{2 \mathrm{n}+1}, \mathrm{~T}^{2} \mathbf{x}_{2 \mathrm{n}+1}\right)\right)+\Psi\left(\mathrm{d}\left(\mathrm{I}^{2} \mathbf{x}_{2 \mathrm{n}} \mathbf{S}^{2} \mathbf{x}_{2 \mathrm{n}}\right)\right)\right\}$
+ C. $\min \left\{\Psi\left(d\left(I^{2} x_{2 n+1} S^{2} x_{2 n}\right)\right), \Psi\left(d\left(I^{2} x_{2 n^{\prime}} T^{2} x_{2 n+1}\right)\right)\right\}$
i.e. $\quad \Psi\left(d_{2 n}\right) \leq$ A. $\max .\left\{\Psi\left(d_{2 n-1}\right),\left[1 / 2 \Psi\left(d_{2 n-1}\right) . \Psi\left(d_{2 n-1}+d_{2 n}\right)\right]^{1 / 2}\right\}$

$$
+ \text { B. }\left\{\Psi\left(\mathrm{d}_{2 \mathrm{n}}\right)+\Psi\left(\mathrm{d}_{2 \mathrm{n}-1}\right)\right\}+\text { C.min. }\left\{\Psi(0), \Psi\left(\mathrm{d}_{2 \mathrm{n}-1}+\mathrm{d}_{2 \mathrm{n}}\right)\right\}
$$

i.e. $\quad \Psi\left(d_{2 n}\right) \leq$ A. max. $\left\{\Psi\left(d_{2 n-1}\right),\left[1 / 2 . \Psi\left(d_{2 n-1}\right) \cdot \Psi\left(d_{2 n-1}+d_{2 n}\right)\right]^{1 / 2}\right\}$

$$
+ \text { B. }\left\{\Psi\left(\mathrm{d}_{2 \mathrm{n}}\right)+\Psi\left(\mathrm{d}_{2 \mathrm{n}-1}\right)\right\} .
$$

Suppose that $. \Psi\left(\mathrm{d}_{2 \mathrm{n}-1}\right)<\left(\mathrm{d}_{2 \mathrm{n}}\right)$.

ISSN: 2350-0328

International Journal of AdvancedResearch in Science, Engineering and Technology
 Vol. 5, Issue 7 , July 2018

Then we have
$\Psi\left(\mathrm{d}_{2 \mathrm{n}}\right) \leq \mathrm{A} \cdot \max \left\{\Psi\left(\mathrm{d}_{2 \mathrm{n}}\right),\left[1 / 2 . \Psi\left(\mathrm{d}_{2 \mathrm{n}}\right) \cdot\left(\Psi\left(\mathrm{d}_{2 \mathrm{n}}\right)+\Psi\left(\mathrm{d}_{2 \mathrm{n}}\right)\right)\right]^{1 / 2}\right\}$

+ B. $\left\{\Psi\left(\mathrm{d}_{2 \mathrm{n}}\right)+\Psi\left(\mathrm{d}_{2 \mathrm{n}}\right)\right\}$

So that $\Psi\left(\mathrm{d}_{2 \mathrm{n}}\right) \leq \mathrm{A} . \Psi\left(\mathrm{d}_{2 \mathrm{n}}\right)+2 \mathrm{~B} . \Psi\left(\mathrm{d}_{2 \mathrm{n}}\right)$.
i.e. $\Psi\left(\mathrm{d}_{2 \mathrm{n}}\right) \leq(\mathrm{A}+2 \mathrm{~B}) . \Psi\left(\mathrm{d}_{2 \mathrm{n}}\right)$.

Therefore $\Psi\left(\mathrm{d}_{2 \mathrm{n}}\right)<\Psi\left(\mathrm{d}_{2 \mathrm{n}}\right)$., \quad since $(\mathrm{A}+2 \mathrm{~B})<1$.

So that our assumption is wrong, then we have
$\Psi\left(\mathrm{d}_{2 \mathrm{n}}\right) \leq \Psi\left(\mathrm{d}_{2 \mathrm{n}-1}\right)$.

Simirlarly we have
$\Psi\left(\mathrm{d}_{2 \mathrm{n}-1}\right) \leq \Psi\left(\mathrm{d}_{2 \mathrm{n}-2}\right)$.

Thus we have $\Psi\left(\mathrm{d}_{\mathrm{n}-1}\right) \leq\left(\mathrm{d}_{\mathrm{n}}\right), \quad \forall \mathrm{n}=1,2 \ldots \ldots \ldots \ldots$

Since Ψ is an increasing function, we conclude that $\left\{d_{n}\right\}$ is a decreasing sequence of non-negative real numbers.

Thus $\mathrm{d}_{2 \mathrm{n}} \leq \mathrm{d}_{2 \mathrm{n}-1} \leq \mathrm{d}_{2 \mathrm{n}-2} \leq$ \qquad $\forall \mathrm{n}=1,2$ \qquad

It follows that the sequences
$\left\{S^{2} x_{0}, T^{2} x_{1}, S^{2} x_{2}\right.$, \qquad $T^{2} x_{2 n-1}, S^{2} x_{2 n}, T^{2} x_{2 n+1}$. ..)
is a Cauchy sequence in the complete metric space X and so has a limit w in X , Hence the sub- sequences $\left\{S^{2} x_{2 n}\right\}=\left\{I^{2} x_{2 n+1}\right\}$ and $\left\{T^{2} x_{2 n-1}\right\}=\left\{I^{2} x_{2 n}\right\}$
converge to the point we because they are subsequences of the sequence (4)

Suppose first of all that I^{2} is continuous, then sequences $\left\{I^{4} x_{2 n}\right\}$ and $\left\{I^{2} S^{2} x_{2 n}\right\}$ converge to a point $I^{2} w$.
if I weak $* *$ commutes with S , we have
$d\left(S^{2} I^{2} x_{2 n}, I^{2} w\right) \leq d\left(S^{2} I^{2} x_{2 n}, I^{2} S^{2} x_{2 n}\right)+d\left(I^{2} S^{2} x_{2 n}, I^{2} w\right)$

ISSN: 2350-0328

International Journal of AdvancedResearch in Science, Engineering and Technology
 Vol. 5, Issue 7 , July 2018

$$
\leq \mathrm{d}\left(\mathrm{~S}^{2}{ }_{2 n}, \mathrm{I}^{2} \mathrm{x}_{2 \mathrm{n}}\right)+\mathrm{d}\left(\mathrm{I}^{2} \mathrm{~S}^{2} \mathrm{x}_{2 \mathrm{n}}, \mathrm{I}^{2} \mathrm{w}\right)
$$

which implies, on letting a tends to infinity that the sequence $\left\{S^{2} I^{2} x_{2 n}\right\}$ also converge to $I^{2} w$.

We now claim that $\mathrm{T}^{2} \mathrm{w}=\mathrm{I}^{2} \mathrm{w}$. suppose not.
then we have $\mathrm{d}\left(\mathrm{I}^{2} \mathrm{w}, \mathrm{T}^{2} \mathrm{w}\right)>0$ using inequality (IV), we obtain
$\Psi\left(\mathrm{d}\left(\mathrm{T}^{2} \mathrm{w}, \mathrm{S}^{2} \mathrm{I}^{2} \mathrm{x}_{2 \mathrm{n}}\right)\right)$
$\left.\leq A . \max \left\{\Psi d\left(I^{2} w, I^{4} x_{2 n}\right)\right),\left[1 / 2 \cdot \Psi\left(d\left(I^{2} w, I^{4} x_{2 n}\right)\right) . \Psi\left(d\left(I^{4} x_{2 n}, T^{2} w,\right)\right)\right]^{1 / 2}\right\}$

+ B. $\left\{\Psi\left(\mathrm{d}\left(\mathrm{I}^{2} \mathrm{w}, \mathrm{T}^{2} \mathrm{w},\right)+\Psi\left(\mathrm{d}\left(\mathrm{I}^{4} \mathrm{x}_{2 \mathrm{n}}, \mathrm{S}^{2} \mathrm{I}^{2} \mathrm{x}_{2 \mathrm{n}}\right)\right)\right\}\right.$
$+\mathrm{C} \cdot \min \left\{\Psi\left(\mathrm{d}\left(\mathrm{I}^{2} \mathrm{w}, \mathrm{S}^{2} \mathrm{I}^{2} \mathrm{x}_{2 \mathrm{n}}\right)\right), \Psi\left(\mathrm{d}\left(\mathrm{I}^{4} \mathrm{x}_{2 \mathrm{n}}, \mathrm{T}^{2} \mathrm{w}\right)\right)\right\}$
i.e. $\quad \Psi\left(d\left(\mathrm{~T}^{2} \mathrm{w}, \mathrm{I}^{2} \mathrm{w}\right)\right)$
$\left.\leq A . \max \left\{\Psi d\left(I^{2} w, I^{2} w\right)\right),\left[1 / 2 . \Psi\left(d\left(I^{2} w, I^{2} w\right)\right) . \Psi\left(d\left(I^{2} w, T^{2} w,\right)\right)\right]^{1 / 2}\right\}$
+ B. $\left\{\Psi\left(\mathrm{d}\left(\mathrm{I}^{2} \mathrm{w}, \mathrm{T}^{2} \mathrm{w},\right)+\Psi\left(\mathrm{d}\left(\mathrm{I}^{2} \mathrm{w}, \mathrm{I}^{2} \mathrm{w}\right)\right)\right\}\right.$
$+\mathrm{C} \cdot \min \left\{\Psi\left(\mathrm{d}\left(\mathrm{I}^{2} \mathrm{w}, \mathrm{I}^{2} \mathrm{w}\right)\right), \Psi\left(\mathrm{d}\left(\mathrm{I}^{2} \mathrm{w}, \mathrm{T}^{2} \mathrm{w}\right)\right)\right\}$

That is $\Psi\left(\mathrm{d}\left(\mathrm{T}^{2} \mathrm{w}, \mathrm{I}^{2} \mathrm{w}\right) \leq \mathrm{B} . \Psi\left(\mathrm{d}\left(\mathrm{I}^{2} \mathrm{w}, \mathrm{T}^{2} \mathrm{w}\right)\right)\right.$.

Therefore $\Psi\left(\mathrm{d}\left(\mathrm{T}^{2} \mathrm{w}, \mathrm{I}^{2} \mathrm{w}\right) \leq \Psi\left(\mathrm{d}\left(\mathrm{I}^{2} \mathrm{w}, \mathrm{T}^{2} \mathrm{w}\right)\right)\right.$, Since $\mathrm{B}<1$.
which is a contradiction and so our assumption is wrong. Hence have

$$
\mathrm{T}^{2} \mathrm{w}=\mathrm{I}^{2} \mathrm{w} .
$$

Now suppose that $S^{2} w \neq T^{2} w$. Then using inequality (IV), we have
$\left.\Psi\left(\mathrm{d}\left(\mathrm{T}^{2} \mathrm{w}, \mathrm{S}^{2} \mathrm{w}\right)\right) \leq \mathrm{A} \cdot \max \left\{\Psi \mathrm{d}\left(\mathrm{I}^{2} \mathrm{w}, \mathrm{I}^{4} \mathrm{w}\right)\right),\left[1 / 2 \cdot \Psi\left(\mathrm{~d}\left(\mathrm{I}^{2} \mathrm{w}, \mathrm{I}^{2} \mathrm{w}\right)\right) . \Psi\left(\mathrm{d}\left(\mathrm{I}^{2} \mathrm{w}, \mathrm{T}^{2} \mathrm{w},\right)\right)\right]^{1 / 2}\right\}$

+ B. $\left\{\Psi\left(\mathrm{d}\left(\mathrm{I}^{2} \mathrm{w}, \mathrm{T}^{2} \mathrm{w}\right)+\Psi\left(\mathrm{d}\left(\mathrm{I}^{2} \mathrm{w}, \mathrm{S}^{2} \mathrm{w}\right)\right)\right\}\right.$
$+\mathrm{C} \cdot \min \left\{\Psi\left(\mathrm{d}\left(\mathrm{I}^{2} \mathrm{w}, \mathrm{S}^{2} \mathrm{w}\right)\right), \Psi\left(\mathrm{d}\left(\mathrm{I}^{2} \mathrm{w}, \mathrm{T}^{2} \mathrm{w}\right)\right)\right\}$
i.e.

$$
\Psi\left(\mathrm{d}\left(\mathrm{~T}^{2} \mathrm{w}, \mathrm{~S}^{2} \mathrm{w}\right)\right) \leq \mathrm{B} \cdot \Psi\left(\mathrm{~d}\left(\mathrm{~T}^{2} \mathrm{w}, \mathrm{~S}^{2} \mathrm{w}\right)\right)
$$

ISSN: 2350-0328

International Journal of AdvancedResearch in Science, Engineering and Technology
 Vol. 5, Issue 7 , July 2018

Therefore $\Psi\left(\mathrm{d}\left(\mathrm{T}^{2} \mathrm{w}, \mathrm{S}^{2} \mathrm{w}\right)\right) \leq \Psi\left(\mathrm{d}\left(\mathrm{T}^{2} \mathrm{w}, \mathrm{S}^{2} \mathrm{w}\right)\right)$, since $\mathrm{B}<1$.

This is a contradiction and so our supposition is wrong and hence

$$
S^{2} w=T^{2} w
$$

Thus

$$
\mathrm{I}^{2} \mathrm{w}=\mathrm{S}^{2} \mathrm{w}=\mathrm{T}^{2} \mathrm{w}
$$

A similar conclusion is achieved if I weak ** commutes with T.
Let us now suppose that S^{2} is continuous instead of I^{2}. Then the sequences $\left\{S^{4} x_{2 n}\right\}$ and $\left\{S^{2} I^{2} x_{2 n}\right\}$ converse to the point $S^{2} w$. Now if S weak ${ }^{* *}$ commutes with I, we have the sequence $\left\{I^{2} S^{2} x_{2 n}\right\}$ also converges to $S^{2} w$.

Since the range of I^{2} contains the range of S^{2}, there exist a point w^{\prime},
such that

$$
\mathrm{I}^{2} \mathrm{w}^{\prime}=\mathrm{S}^{2} \mathrm{w} .
$$

Then if $T^{2} w^{\prime} \neq S^{2} w=I^{2} w^{\prime}$, we have by inequality (IV) we have

$$
\Psi\left(\mathrm{d}\left(\mathrm{~T}^{2} \mathrm{w}^{\prime}, \mathrm{S}^{4} \mathrm{w}_{2 \mathrm{n}}\right)\right)=\Psi\left(\mathrm{d}\left(\mathrm{~T}^{2} \mathrm{w}^{\prime}, \mathrm{S}^{2} \mathrm{~S}^{2} \mathrm{x}_{2 \mathrm{n}}\right)\right)
$$

$\left.\leq A . \max \left\{\Psi d\left(I^{2} w, I^{2} S^{2} x_{2 n}\right)\right),\left[1 / 2 \cdot \Psi\left(d\left(I^{2} w, I^{2} S^{2} x_{2 n}\right)\right) . \Psi\left(d\left(I^{2} S^{2} x_{2 n}, T^{2} w^{\prime}\right)\right)\right]^{1 / 2}\right\}$

+ B. $\left\{\Psi\left(d\left(I^{2} w^{\prime}, T^{2} w^{\prime}\right)+\Psi\left(d\left(I^{2} S^{2} \mathrm{x}_{2 \mathrm{n}}, \mathrm{S}^{4} \mathrm{x}_{2 \mathrm{n}}\right)\right)\right\}\right.$
$+\mathrm{C} \cdot \min \left\{\Psi\left(\mathrm{d}\left(\mathrm{I}^{2} \mathrm{w}^{\prime}, \mathrm{S}^{4} \mathrm{x}_{2 \mathrm{n}}\right)\right), \Psi\left(\mathrm{d}\left(\mathrm{I}^{2} \mathrm{~S}^{2} \mathrm{x}_{2 \mathrm{n}}, \mathrm{T}^{2} \mathrm{w}^{\prime}\right)\right)\right\}$
i.e.
$\left.\Psi\left(\mathrm{d}\left(\mathrm{T}^{2} \mathrm{w}^{\prime}, \mathrm{S}^{2} \mathrm{w}\right)\right) \leq \quad \mathrm{A} \cdot \max \left\{\Psi \mathrm{d}\left(\mathrm{S}^{2} \mathrm{w}, \mathrm{S}^{2} \mathrm{w}\right)\right),\left[1 / 2 . \Psi\left(\mathrm{d}\left(\mathrm{S}^{2} \mathrm{w}, \mathrm{I}^{2} \mathrm{w}\right)\right) . \Psi\left(\mathrm{d}\left(\mathrm{S}^{2} \mathrm{w}, \mathrm{T}^{2} \mathrm{w}^{\prime}\right)\right)\right]^{1 / 2}\right\}$

$$
\begin{aligned}
& \left.+ \text { B. }\left\{\Psi \mathrm{d}\left(\mathrm{~S}^{2} \mathrm{w}^{\prime}, \mathrm{T}^{2} \mathrm{w}^{\prime}\right)\right),+\Psi\left(\mathrm{d}\left(\mathrm{~S}^{2} \mathrm{w}, \mathrm{~S}^{2} \mathrm{w}\right)\right)\right\} \\
& \left.+ \text { C.min }\left\{\Psi \mathrm{d}\left(\mathrm{~S}^{2} \mathrm{w}, \mathrm{~S}^{2} \mathrm{w}\right)\right)+\Psi\left(\mathrm{d}\left(\mathrm{~S}^{2} \mathrm{w}, \mathrm{~T}^{2} \mathrm{w}^{\prime}\right)\right)\right\}
\end{aligned}
$$

I.e. $\left.\Psi\left(\mathrm{d}\left(\mathrm{T}^{2} \mathrm{w}^{\prime}, \mathrm{S}^{2} \mathrm{w}\right)\right) \leq \mathrm{B} . \Psi \mathrm{d}\left(\mathrm{S}^{2} \mathrm{w}, \mathrm{T}^{2} \mathrm{w}^{\prime}\right)\right)$,

Therefore $\left.\Psi\left(d\left(T^{2} w^{\prime}, S^{2} w\right)\right) \leq B . \Psi d\left(S^{2} w, T^{2} w^{\prime}\right)\right)$, since $B<1$

Thus we arrive at a contradiction

Hence $S^{2} w=T^{2} w^{\prime}=I^{2} w^{\prime}$.
Now suppose that $S^{2} w \neq T^{2} w^{\prime}=I^{2} w$. Then by inequality (IV), we have $\left.\Psi\left(d\left(T^{2} w^{\prime}, S^{2} w^{\prime}\right)\right) \leq A . \max \left\{\Psi d\left(I^{2} w^{\prime}, \mathrm{I}^{2} w^{\prime}\right)\right),\left[1 / 2 . \Psi\left(d\left(\mathrm{I}^{2} w^{\prime}, \mathrm{I}^{2} \mathrm{w}^{\prime}\right)\right) . \Psi\left(\mathrm{d}\left(\mathrm{I}^{2} \mathrm{w}^{\prime}, \mathrm{T}^{2} \mathrm{w}^{\prime}\right)\right)\right]^{1 / 2}\right\}$

ISSN: 2350-0328

International Journal of AdvancedResearch in Science, Engineering and Technology
 Vol. 5, Issue 7 , July 2018

+ B. $\left\{\Psi\left(\mathrm{d}\left(\mathrm{I}^{2} \mathrm{w}^{\prime}, \mathrm{T}^{2} \mathrm{w}^{\prime},\right)+\Psi\left(\mathrm{d}\left(\mathrm{I}^{2} \mathrm{w}^{\prime}, \mathrm{S}^{2} \mathrm{w}^{\prime}\right)\right)\right\}\right.$
$+C \cdot \min \left\{\Psi\left(d\left(I^{2} w^{\prime}, S^{2} w^{\prime}\right)\right), \Psi\left(d\left(I^{2} w^{\prime}, T^{2} w^{\prime}\right)\right)\right\}$
i.e.
$\Psi\left(\mathrm{d}\left(\mathrm{T}^{2} \mathrm{w}^{\prime}, \mathrm{S}^{2} \mathrm{w}^{\prime}\right)\right) \leq \mathrm{B} \cdot \Psi\left(\mathrm{d}\left(\mathrm{T}^{2} \mathrm{w}^{\prime}, \mathrm{S}^{2} \mathrm{w}^{\prime}\right)\right)$

Therefore $\Psi\left(d\left(T^{2} w^{\prime}, S^{2} w^{\prime}\right)\right) \leq \Psi\left(d\left(T^{2} w^{\prime}, S^{2} w^{\prime}\right)\right)$, since $B<1$.

This is a contradiction and so $\mathrm{I}^{2} \mathrm{w}^{\prime}=\mathrm{S}^{2} \mathrm{w}^{\prime}=\mathrm{T}^{2} \mathrm{w}^{\prime}$.

A similar conclusion is obtained if one assume that T^{2} is continuous and T is weak $* *$ commuting with I .

Case II. Let $\mathrm{d}_{2 \mathrm{n}-1}=0$ for some n .

Then $\mathrm{I}^{2} \mathrm{x}_{2 \mathrm{n}}=\mathrm{T}^{2} \mathrm{x}_{2 \mathrm{n}-1}=\mathrm{S}^{2} \mathrm{x}_{2 \mathrm{n}}=\mathrm{I}^{2} \mathrm{x}_{2 \mathrm{n}+1}$ We claim $\mathrm{I}^{2} \mathrm{x}_{2 \mathrm{n}}=\mathrm{T}^{2} \mathrm{x}_{2 \mathrm{n}}$,

Otherwise $d\left(I^{2} x_{2 n}, T^{2} x_{2 n}\right)>0$. By inequality (IV), we have
$0<\Psi\left(\mathrm{d}\left(\mathrm{T}^{2} \mathrm{x}_{2 \mathrm{n}}, \mathrm{I}^{2} \mathrm{x}_{2 \mathrm{n}}\right)=\Psi\left(\mathrm{d}\left(\mathrm{T}^{2} \mathrm{x}_{2 \mathrm{n}}, \mathrm{S}^{2} \mathrm{x}_{2 \mathrm{n}}\right)\right)\right.$
$<A . \max . \Psi\left(d\left(I^{2} x_{2 n}, I^{2} x_{2 n}\right)\right),\left[1 / 2, \Psi\left(d\left(I^{2} x_{2 n}, I^{2} x_{2 n}\right) . \Psi\left(d\left(I^{2} x_{2 n}, T^{2} x_{2 n}\right)\right)\right]^{1 / 2}\right)$

+ B. $\left\{\Psi\left(\mathrm{d}\left(\mathrm{I}^{2} \mathrm{x}_{2 \mathrm{n}}, \mathrm{T}^{2} \mathrm{x}_{2 \mathrm{n}}\right)+\Psi\left(\mathrm{d}\left(\mathrm{I}^{2} \mathrm{x}_{2 \mathrm{n}}, \mathrm{S}^{2} \mathrm{x}_{2 \mathrm{n}}\right)\right)\right\}\right.$
$+C \cdot \min \left\{\Psi\left(d\left(I^{2} x_{2 n}, S^{2} x_{2 n}\right)+\Psi\left(d\left(I^{2} x_{2 n}, T^{2} x_{2 n}\right)\right)\right\}\right.$
i.e. $\quad 0<B \Psi\left(d\left(T^{2} x_{2 n}, I^{2} x_{2 n}\right) \leq B . \Psi\left(d\left(I^{2} x_{2 n}, T^{2} x_{2 n}\right)\right.\right.$
i.e. $\quad(1-B) \Psi\left(d\left(T^{2} x_{2 n}, I^{2} x_{2 n}\right) \leq 0\right.$.

This implies $I^{2} x_{2 n}=T^{2} x_{2 n}=S^{2} x_{2 n}$

CaseIII. Let $\mathrm{d}_{2 \mathrm{n}}=0$ for some n .

Then $\mathrm{I}^{2} \mathrm{x}_{2 \mathrm{n}+1}=\mathrm{S}^{2} \mathrm{x}_{2 \mathrm{n}}=\mathrm{T}^{2} \mathrm{x}_{2 \mathrm{n}+1}$ We claim $\mathrm{I}^{2} \mathrm{x}_{2 \mathrm{n}+1}=\mathrm{S}^{2} \mathrm{X}_{2 \mathrm{n}+1}$,

Otherwise $d\left(I^{2} x_{2 n+1}, S^{2} x_{2 n+1}\right)>0$.

By inequality (IV), we have
$0<\Psi\left(d\left(I^{2} x_{2 n+1}, S^{2} x_{2 n+1}\right)\right)=\Psi\left(d\left(T^{2} x_{2 n+1}, S^{2} x_{2 n-1}\right)\right)$

ISSN: 2350-0328

International Journal of AdvancedResearch in Science, Engineering and Technology
 Vol. 5, Issue 7 , July 2018

$<$ A.max. $\Psi\left(d\left(I^{2} x_{2 n+1}, I^{2} x_{2 n+1}\right)\right),\left[1 / 2 \Psi\left(d\left(I^{2} x_{2 n+1}, I^{2} x_{2 n+1}\right) . \Psi\left(d\left(I^{2} x_{2 n+1}, T^{2} x_{2 n+1}\right)\right]^{1 / 2}\right)\right.$

+ B. $\left\{\Psi\left(\mathrm{d}\left(\mathrm{I}^{2} \mathrm{x}_{2 \mathrm{n}+1}, \mathrm{~T}^{2} \mathrm{x}_{2 \mathrm{n}+1}\right)+\Psi\left(\mathrm{d}\left(\mathrm{I}^{2} \mathrm{x}_{2 \mathrm{n}+1}, \mathrm{~S}^{2} \mathrm{x}_{2 \mathrm{n}+1}\right)\right)\right\}\right.$
+ C. $\min \left\{\Psi\left(d\left(I^{2} \mathbf{x}_{2 \mathrm{n}+1}, \mathrm{~S}^{2} \mathbf{x}_{2 \mathrm{n}+1}\right)\right), \Psi\left(\mathrm{d}\left(\mathrm{I}^{2} \mathrm{x}_{2 \mathrm{n}+1}, \mathrm{~T}^{2} \mathbf{x}_{2 \mathrm{n}+1}\right)\right)\right\}$
i.e. $\quad 0<\Psi\left(d\left(I^{2} x_{2 n+1}, S^{2} x_{2 n+1}\right)\right) \leq B . \Psi\left(d\left(I^{2} x_{2 n+1}, S^{2} x_{2 n-1}\right)\right)$
i.e. $\quad(1-B) . \Psi\left(d\left(I^{2} X_{2 n+1}, S^{2} X_{2 n+1}\right)\right) \leq 0$.

Since B < 1, we have

$$
I^{2} x_{2 n+1}=S^{2} x_{2 n+1}=T^{2} x_{2 n+1}
$$

Thus we see that in all cases, there exists a point w such that

$$
\mathrm{I}^{2} \mathrm{w}=\mathrm{S}^{2} \mathrm{w}=\mathrm{T}^{2} \mathrm{w}=\mathrm{z} \text { (say). }
$$

Again if I weak ** commutes with S , we have
$\mathrm{d}\left(\mathrm{S}^{2} \mathrm{Iw}, \mathrm{IS}^{2} \mathrm{w}\right) \leq \mathrm{d}\left(\mathrm{SI}^{2} \mathrm{w}, \mathrm{I}^{2} \mathrm{Sw}\right) \leq \mathrm{d}(\mathrm{SIw}, \mathrm{ISw}) \leq \mathrm{d}\left(\mathrm{S}^{2} \mathrm{w}, \mathrm{I}^{2} \mathrm{w}\right)=0$
which implies that
$S^{2} I w=I S^{2} w, S I^{2} w=I^{2} S w, S I w=I S w$ and so $I^{2} S w=S^{3} w$.

Now we claim Iz =z. If not, then $\mathrm{IS}^{2} \mathrm{w} \neq \mathrm{T}^{2} \mathrm{w}$.

Therefore
$\Psi\left(\mathrm{d}\left(\mathrm{IS}^{2} \mathrm{w}, \mathrm{T}^{2} \mathrm{w}\right)\right)=\Psi\left(\mathrm{d}\left(\mathrm{T}^{2} \mathrm{w}, \mathrm{S}^{2} \mathrm{w}\right)\right)$

$$
\begin{aligned}
& \left.\leq A \cdot \max \left\{\Psi d\left(\mathrm{I}^{2} \mathrm{w}, \mathrm{I}^{3} \mathrm{w}\right)\right),\left[1 / 2 \cdot \Psi\left(\mathrm{~d}\left(\mathrm{I}^{2} \mathrm{w}, \mathrm{I}^{3} \mathrm{w}\right)\right) \cdot \Psi\left(\mathrm{d}\left(\mathrm{I}^{3} \mathrm{w}, \mathrm{~T}^{2} \mathrm{w}\right)\right)\right]^{1 / 2}\right\} \\
& \left.+ \text { B. }\left\{\Psi \mathrm{d}\left(\mathrm{I}^{2} \mathrm{w}, \mathrm{~T}^{2} \mathrm{w}\right)\right),+\Psi\left(\mathrm{d}\left(\mathrm{I}^{3} \mathrm{w}, \mathrm{~S}^{2} \mathrm{I} \mathrm{w}\right)\right)\right\} \\
& \left.+ \text { C.min }\left\{\Psi \mathrm{d}\left(\mathrm{I}^{2} \mathrm{w}, \mathrm{~S}^{2} \mathrm{I} \mathrm{w}\right)\right), \Psi\left(\mathrm{d}\left(\mathrm{I}^{3} \mathrm{w}, \mathrm{~T}^{2} \mathrm{w}\right)\right)\right\}
\end{aligned}
$$

i.e. $\left.\Psi(\mathrm{d}(\mathrm{z}, \mathrm{Iz})) \leq \mathrm{A} . \max \{\Psi \mathrm{d}(\mathrm{z}, \mathrm{Iz})),[1 / 2 . \Psi(\mathrm{d}(\mathrm{z}, \mathrm{Iz})) . \Psi(\mathrm{d}(\mathrm{Iz}, \mathrm{z}))]^{1 / 2}\right\}$

$$
+ \text { B. }\{\Psi \mathrm{d}(\mathrm{z}, \mathrm{z})),+\Psi(\mathrm{d}(\mathrm{Iz}, \mathrm{Iz}))\}
$$

ISSN: 2350-0328

International Journal of AdvancedResearch in Science, Engineering and Technology
 Vol. 5, Issue 7 , July 2018

+ C.min $\{\Psi d(z, I z)),+\Psi(d(I z, z))\}$
i.e. $\quad \Psi d(z, I z))<(A+C) . \Psi d(z, I z))$
which is a contradiction, since $(A+C)<1$

Hence $\mathrm{IS}^{2} \mathrm{w}=\mathrm{T}^{2} \mathrm{~W}$ i.e. $\mathrm{Iz}=\mathrm{z} \quad$ Thus z is a fixed point of I .

Now we need to prove that $T^{2} z=z$ suppose $T^{2} z \neq z$. then we get
$\Psi\left(\mathrm{d}\left(\mathrm{T}^{2} \mathrm{z}, \mathrm{z}\right)=\Psi\left(\mathrm{d}\left(\mathrm{T}^{2} \mathrm{z}, \mathrm{S}^{2} \mathrm{w}\right)\right)\right.$

$$
\begin{aligned}
& \left.\leq \text { A. } \max \left\{\Psi d\left(\mathrm{I}^{2} \mathrm{z}, \mathrm{I}^{2} \mathrm{w}\right)\right),\left[1 / 2 \cdot \Psi\left(\mathrm{~d}\left(\mathrm{I}^{2} \mathrm{z}, \mathrm{I}^{2} \mathrm{w}\right)\right) \cdot \Psi\left(\mathrm{d}\left(\mathrm{I}^{2} \mathrm{w}, \mathrm{~T}^{2} \mathrm{z}\right)\right)\right]^{1 / 2}\right\} \\
& + \text { B. }\left\{\Psi\left(\mathrm{d}\left(\mathrm{I}^{2} \mathrm{z}, \mathrm{~T}^{2} \mathrm{z},\right)+\Psi\left(\mathrm{d}\left(\mathrm{I}^{2} \mathrm{w}, \mathrm{~S}^{2} \mathrm{w}\right)\right)\right\}\right. \\
& + \text { C. } \min \left\{\Psi\left(\mathrm{d}\left(\mathrm{I}^{2} \mathrm{z}, \mathrm{~S}^{2} \mathrm{w}\right)\right), \Psi\left(\mathrm{d}\left(\mathrm{I}^{2} \mathrm{w}, \mathrm{~T}^{2} \mathrm{w}\right)\right)\right\}
\end{aligned}
$$

i.e.
$\left.\Psi\left(\mathrm{d}\left(\mathrm{T}^{2} \mathrm{z}, \mathrm{z}\right)\right) \leq \mathrm{A} . \max \{\Psi \mathrm{d}(\mathrm{z}, \mathrm{z})), 0\right\},+$ B. $\left[\Psi\left(\mathrm{d}\left(\mathrm{z}, \mathrm{T}^{2} \mathrm{w}\right)\right)+0\right\}$

$$
+\mathrm{C} \cdot \min \left\{\Psi(\mathrm{~d}(\mathrm{z}, \mathrm{z})), \Psi\left(\mathrm{d}\left(\mathrm{z}, \mathrm{~T}^{2} \mathrm{z}\right)\right)\right\}, \quad \text { Since } \mathrm{I}^{2} \mathrm{z}=\mathrm{z}
$$

Thus, $\quad \Psi\left(\mathrm{d}^{2}\left(\mathrm{~T}^{2} \mathrm{z}, \mathrm{z}\right)\right) \leq \mathrm{B} . \Psi\left(\mathrm{d}\left(\mathrm{z}, \mathrm{T}^{2} \mathrm{z}\right)\right.$,

Which is a contradiction, $\mathrm{B}<1$.

Therefore $\mathrm{T}^{2} \mathrm{z}=\mathrm{z}$.

Now using the rotativity of T. w. r. t. I (or w.r.t. S) we have

$$
\mathrm{d}(\mathrm{Tz}, \mathrm{z})=\mathrm{d}\left(\mathrm{Tz}, \mathrm{I}^{2} \mathrm{Z}\right) \leq \mathrm{d}\left(\mathrm{Iz}, \mathrm{~T}^{2} \mathrm{z}\right)=\mathrm{d}(\mathrm{z}, \mathrm{z})=0
$$

Hence $\mathrm{Tz}=\mathrm{z}, \mathrm{i}, \mathrm{e}, \mathrm{z}$ is a fixed point of T .

Suppose $\mathrm{Sz} \neq \mathrm{z}$, then

$$
\begin{gathered}
\Psi(\mathrm{d}(\mathrm{Sz}, \mathrm{z}))=\Psi\left(\mathrm{d}\left(\mathrm{SI}^{2} \mathrm{w}, \mathrm{z}\right)\right)=\Psi\left(\mathrm{d}\left(\mathrm{I}^{2} \mathrm{Sw}, \mathrm{z}\right)\right) \\
=\Psi\left(\mathrm{d}\left(\mathrm{~S}^{3} \mathrm{w}, \mathrm{~T}^{2} \mathrm{w}\right)\right) \\
=\Psi\left(\mathrm{d}\left(\mathrm{~T}^{2} \mathrm{w}, \mathrm{~S}^{2} \mathrm{Sw}\right)\right)
\end{gathered}
$$

ISSN: 2350-0328

International Journal of AdvancedResearch in Science, Engineering and Technology
 Vol. 5, Issue 7 , July 2018

```
\(\leq\) A. \(\left.\max \left\{\Psi d\left(\mathrm{I}^{2} \mathrm{w}, \mathrm{I}^{2} \mathrm{Sw}\right)\right),\left[1 / 2 . \Psi\left(\mathrm{d}\left(\mathrm{I}^{2} \mathrm{w}, \mathrm{I}^{2} \mathrm{Sw}\right)\right) . \Psi\left(\mathrm{d}\left(\mathrm{I}^{2} \mathrm{Sw}, \mathrm{T}^{2} \mathrm{w}\right)\right)\right]^{1 / 2}\right\}\)
+ B. \(\left\{\Psi\left(\mathrm{d}\left(\mathrm{I}^{2} \mathrm{w}, \mathrm{T}^{2} \mathrm{w}\right)+\Psi\left(\mathrm{d}\left(\mathrm{I}^{2} \mathrm{Sw}, \mathrm{S}^{3} \mathrm{w}\right)\right)\right\}\right.\)
\(+\mathrm{C} \cdot \min \left\{\Psi\left(\mathrm{d}\left(\mathrm{I}^{2} \mathrm{w}, \mathrm{S}^{3} \mathrm{w}\right)\right), \Psi\left(\mathrm{d}\left(\mathrm{I}^{2} \mathrm{~S} w, \mathrm{~T}^{2} \mathrm{w}\right)\right)\right\}\)
```

i.e.
$\left.\Psi(\mathrm{d}(\mathrm{Sz}, \mathrm{z})) \leq \mathrm{A} . \max \{\Psi \mathrm{d}(\mathrm{z}, \mathrm{Sz})),[1 / 2 . \Psi(\mathrm{d}(\mathrm{z}, \mathrm{Sz})) . \Psi(\mathrm{d}(\mathrm{Sz}, \mathrm{z}))]^{1 / 2}\right\}$

+ B. $\{\Psi \mathrm{d}(\mathrm{z}, \mathrm{z})),+\Psi(\mathrm{d}(\mathrm{Sz}, \mathrm{Sz}))\}$
$+\mathrm{C} \cdot \min \{\Psi \mathrm{d}(\mathrm{z}, \mathrm{Sz})), \Psi(\mathrm{d}(\mathrm{Sz}, \mathrm{z}))\}$

So that $\Psi(\mathrm{d}(\mathrm{Sz}, \mathrm{z})) \leq(\mathrm{A}+\mathrm{C}) . \Psi(\mathrm{d}(\mathrm{Sz}, \mathrm{z}))$,
which is a contradiction, since $(\mathrm{A}+\mathrm{C})>1$.

Hence $S z=$ z.i.e. z is a fixed point of S.

Thus z is a common fixed point of I, S and T if I weak ${ }^{* *}$ commutes with S . Similarty we can prove that z is a common fixed point of I, S and T , if is weak ${ }^{* *}$ commutes with T and S is rotative w.r. to I .

If we assume that S is weak ** commutes with I , then as above we can
show that, $\mathrm{Iz}=\mathrm{z}=\mathrm{Sz}$ and $\mathrm{T}^{2} \mathrm{z}=\mathrm{z}$

If T is rotative w.r. to S , we have

$$
\Psi(\mathrm{d}(\mathrm{Tz}, \mathrm{z}))=\Psi\left(\mathrm{d}\left(\mathrm{Tz}, \mathrm{~S}^{2} \mathrm{z}\right)\right) \leq \Psi\left(\mathrm{d}\left(\mathrm{Sz}, \mathrm{~T}^{2} \mathrm{z}\right)\right)=\Psi(\mathrm{d}(\mathrm{z}, \mathrm{z}))=0
$$

Hence $\mathrm{Tz}=\mathrm{z}$. Thus z is a common fixed point of I, S and T if S is weak $* *$ commuting with I and T rotative w.r.t.S.

Proceeding in the same way, we can show that z is a common fixed point of I, S and T if T is weak ** commuting with I and S is rotative w.r. to T .

If z^{\prime} is another common fixed point of S and I then we get

$$
I^{2} z^{\prime}=z^{\prime} \text { and } S^{2} z^{\prime}=z^{\prime} \text { if } S^{2} z^{\prime} \neq I^{2} z,
$$

then

$$
\Psi\left(\mathrm{d}\left(\mathrm{I}^{2} \mathrm{z}, \mathrm{~S}^{2} \mathrm{z}^{\prime}\right)\right)=\Psi\left(\mathrm{d}\left(\mathrm{z}, \mathrm{~S}^{2} \mathrm{z}^{\prime}\right)\right)
$$

ISSN: 2350-0328

International Journal of AdvancedResearch in Science, Engineering and Technology
 Vol. 5, Issue 7 , July 2018

$=\Psi\left(\mathrm{d}\left(\mathrm{T}^{2} \mathrm{w}, \mathrm{S}^{2} \mathrm{z}^{\prime}\right)\right)$
\leq A. max. $\left.\left\{\Psi\left(\mathrm{I}^{2} \mathrm{w}, \mathrm{I}^{2} \mathrm{z}^{\prime}\right)\right),\left[{ }^{1} / 2 \cdot \Psi\left(\mathrm{~d}\left(\mathrm{I}^{2} \mathrm{w}, \mathrm{I}^{2} \mathrm{z}^{\prime}\right)\right) . \Psi\left(\mathrm{d}\left(\mathrm{I}^{2} \mathrm{z}^{\prime}, \mathrm{T}^{2} \mathrm{w}\right)\right)\right]^{1 / 2}\right\}$

+ B. $\left\{\Psi\left(\mathrm{d}\left(\mathrm{I}^{2} \mathrm{w}, \mathrm{T}^{2} \mathrm{w}\right)\right)+\Psi\left(\mathrm{d}\left(\mathrm{I}^{2} \mathrm{z}^{\prime}, \mathrm{S}^{2} \mathrm{z}^{\prime}\right)\right)\right\}$
+ C.min. $\left\{\Psi\left(\mathrm{d}\left(\mathrm{I}^{2} \mathrm{w}, \mathrm{S}^{2} \mathrm{z}^{\prime}\right)\right), \Psi\left(\mathrm{d}\left(\mathrm{I}^{2} \mathrm{z}^{\prime}, \mathrm{T}^{2} \mathrm{w}\right)\right)\right\}$
i.e. $\Psi\left(\mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)\right) \leq$ A. $\max .\left\{\Psi\left(\mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)\right),\left[1 / 2 . \Psi\left(\mathrm{d}\left(\mathrm{z}^{\prime}, \mathrm{z}\right)\right) . \Psi\left(\mathrm{d}\left(\mathrm{z}^{\prime}, \mathrm{z}\right)\right)\right]^{1 / 2}\right\}$

$$
+\mathrm{B} .\left\{\Psi(\mathrm{d}(\mathrm{z}, \mathrm{z}))+\Psi\left(\mathrm{d}\left(\mathrm{z}^{\prime}, \mathrm{z}\right)\right)\right\}
$$

+ C. $\min .\left\{\Psi\left(\mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)\right), \Psi\left(\mathrm{d}\left(\mathrm{z}^{\prime}, \mathrm{z}\right)\right)\right.$.

That is $\quad \Psi\left(\mathrm{d}\left(\mathrm{z}^{\prime}, \mathrm{z}\right) \leq(\mathrm{A}+\mathrm{C}) . \Psi\left(\mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)\right)\right.$.

This is a contradiction, since $(A+C)<1$. So that $S^{2} z^{\prime}=I^{2} z$ i.e. $z^{\prime}=z$,

Hence z is a unique common fixed point of S and I .

We can prove similarly that z is a unique common fixed point of I and T and also for S and T .

Assuming $\mathrm{S}=\mathrm{T}$ on X , we have the following Corollary.

Corollary

Let S and I be mappings of a complete metric space (X, d) in to itself such that for x, y in X ,

$$
\begin{aligned}
& + \text { B. }\left\{\Psi\left(\mathrm{d}\left(\mathrm{I}^{2} \mathrm{x}, \mathrm{~S}^{2} \mathrm{x}\right)\right)+\Psi\left(\mathrm{d}\left(\mathrm{I}^{2} \mathrm{y}, \mathrm{~S}^{2} \mathrm{y}\right)\right)\right\} \\
& + \text { C. } \min .\left\{\Psi\left(\mathrm{d}\left(\mathrm{I}^{2} \mathrm{x}, \mathrm{~S}^{2} \mathrm{y}\right)\right), \Psi\left(\mathrm{d}\left(\mathrm{I}^{2} \mathrm{y}, \mathrm{~S}^{2} \mathrm{x}\right)\right)\right\},
\end{aligned}
$$

where $(\mathrm{A}+2 \mathrm{~B}+\mathrm{C})<1$, for $\mathrm{A}, \mathrm{B}, \mathrm{C} \geq 0$.

If the range of I^{2} contains the range of S^{2}, if I weak ** commutes with S and if S^{2} or I^{2} is continuous, then S and I have a unique common fixed point.

ISSN: 2350-0328

International Journal of AdvancedResearch in Science, Engineering and Technology
 Vol. 5, Issue 7 , July 2018

BIBLIOGRAPHY

[1]	Diviccaro, M.L., Seesa,S and Fisher, B
[2]	Fisher, B.
[3]	Pathak H.K.
[4]	Rathore, M.S. and Dolas, U
[5]	Sessa,S.
[6]	Pathak H.K. and Sharma, Rekha.

