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ABSTRACT: The main theme of the present examined the influence of heat transfer on magneto hydrodynamics (MHD) 

for the Oscillatory Slip Flow for Carreau-Yasuda Fluid with variable Viscosity through an inclined Channel for  kind of 

geometries "Poiseuille flow  flow" through a porous medium inclined channel. The momentum equation for the problem, is 

a non-linear differential equations, has been found by using "perturbation technique" and intend to calculate the solution 

for the small number of Weissenberg (We<<1) to get clear forms for the velocity field by assisting the (MATHEMATICA) 

program to obtain the numerical results and illustrations. The physical features of Darcy number, magnetic parameter, 

Grashof number and radiation parameter are discussed simultaneously through presenting graphical discussion. 

Investigated through graphs the variation of a velocity profile for various pertinent parameters. While the velocity behaves 

strangely under the influence of the Brownian motion parameter and local nanoparticle Grashof number effect. On the 

basis of this study, it is found that the velocity directly with Grashof number, Darcy number, radiation parameter, and 

reverse variation with magnetic parameter and frequency of the oscillation and discussed the solving problems through 

graphs. 
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I. INTRODUCTION 

 

Central porosity is a matter containing a number of small holes distributed throughout the matter. A porous medium 

flows through the fluid infiltration and water infiltration into the river beds. The movement of groundwater, water, and 

oils are some important examples of flows through porous means. The oil tank often contains a sedimentary structure 

such as limestone and sandstone in which the oil is contained. Another example of flow through a porous medium is 

leakage under the dam which is very important. Examples: of natural porosity such as sand ash, wood, filtering, human 

lung, bitterness and yellow stones, oil production engineering and many other processes. In [1] show the exact solutions 

for fourth kinds of flows between two parallel plates. [2] studied the influence of inclined magnetic field between two 

infinite parallel plates, [3] discussed the laminar flow between parallel plates under the action of the transverse 

magnetic field and heat transfer. [4] discussed the two kinds of geometries Poiseuille flow and Couette flow of Carreau 

fluid with pressure dependent viscosity in a variable porous medium. Viscosity is one of the most important 

specifications for fluids, [6] studied the variable viscosity through a porous medium and used the homotopy analysis 

method to solve the problem. [7] studied the related of the variable viscosity through a porous medium by using 

generalized Darcy’s law, to solve the problem he using the perturbation technique. [8] Influence of heat transfer on 

magneto hydrodynamics oscillatory flow for Williamson fluid through a porous medium. [9] studied the variable 

viscosity of Jeffrey fluid in an asymmetric channel. In most systems, channels or ducts used are sloped. This fact 

stimulated scientists to explore the associated flows in a slanted channel (see Refs [10-13]). 

The study considers a mathematical model for the influence of MHD oscillatory slip flow for Carreau-Yasuda fluid 

through inclined  channel with varying temperature and concentration.  The perturbation technique series use to solve 

the problem. The result of the physical parameters problem was discussed by using the graphs. 
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II.MATHEMATICAL FORMULATION 

 

     Let  us consider the flow of a Carreau-Yasuda fluid in a channel of width 𝒉 under the effects of electrically applied 

magnetic field and radioactive heat transfer as depicted in (Fig. 1). Supposed that the fluid has very small 

electromagnetic force produced and the electrical conductivity is small. We are considering Cartesian coordinate 

system such that, (𝑢 𝑦 , 0,0) is a velocity vector in which 𝑢 is the x-component of velocity and y is perpendicular to the 

x-axis.  

 

 

 

 

 
 

 

 

 

Fig.1 Physical model  

 

 

 

III. BASIC EQUATIONS: 

 

      The basic equations governing for Carreau-Yasuda fluid are given by: 

The continuity equation is given by:
𝜕𝑢 

𝜕𝑥 
+

𝜕𝑣 

𝜕𝑦 
= 0                                                                                                                            (1)  

The momentum equations are: 

In the 𝑥 – direction: 

𝜌  
𝜕𝑢 

𝜕𝑡 
+ 𝑢 

𝜕𝑢 

𝜕𝑥 
+ 𝑣 

𝜕𝑢 

𝜕𝑦 
 = −

𝜕𝑝 

𝜕𝑥 
+
𝜕𝜏 𝑥𝑥    

𝜕𝑥 
+
𝜕𝜏 𝑥𝑦    

𝜕𝑦 
+ 𝜌𝑔𝛽𝑇

 𝑇−𝑇0 𝑆𝑖𝑛 𝜉 + 𝜌𝑔𝛽𝐶
 𝐶−𝐶0 𝑆𝑖𝑛 𝜉  

−𝜍𝐵0
2𝑆𝑖𝑛2 𝜉 𝑢 −

𝜇(𝑇)

𝑘
𝑢 + 𝜌𝑔 𝑠𝑖𝑛 𝛿                                                                                                             (2) 

In the 𝑦 – direction: 

𝜌(
𝜕𝑣 

𝜕𝑡 
+ 𝑢 

𝜕𝑣 

𝜕𝑥 
+ 𝑣 

𝜕𝑣 

𝜕𝑦 
) = −

𝜕𝑝 

𝜕𝑦 
+

𝜕𝜏 𝑥𝑦    

𝜕𝑥 
+

𝜕𝜏 𝑦𝑦    

𝜕𝑦 
−

𝜇(𝑇)

𝑘
𝑣 + 𝜌𝑔cos 𝛿       (3) 

The temperature equation is given by: 

𝜕𝑇

𝜕𝑡 
=

𝐾

𝜌𝐶𝑝

𝜕2𝑇

𝜕𝑦 2 −
1

𝜌𝐶𝑝

𝜕𝑞

𝜕𝑦
+

𝑄𝐻

𝜌𝐶𝑝
(𝑇 − 𝑇0)                     (4) 

The concentration equation is given by: 

𝜕𝐶

𝜕𝑡 
= 𝐷

𝜕2𝐶

𝜕𝑦 2 − 𝐾𝑟
∗(𝐶 − 𝐶2) +

𝐷𝐾𝑇

𝑇𝑚

𝜕2𝑇

𝜕𝑦 2            (5)  

The fundamental equation for Carreau- Yasuda fluid given by: 

𝑺 = −𝑝 𝑰 + 𝜏              (6) 

𝜏 = [𝜇∞ + (𝜇(𝑇) − 𝜇∞) 1 +  Γ𝛾   𝑏 
𝑛−1

𝑏 ]𝐴1           (7) 

where𝑝 is the pressure, 𝑰 is the unit tensor,𝜏  is the extra stress tensor, Γ is the time constant, 𝜇∞and 𝜇(𝑇) are the infinite 

shear rate viscosity and fluid viscosity dependent on temperature, then  𝛾  is defined as: 

γ =  
1

2
  𝛾 𝑖𝑗 𝛾 𝑗𝑖𝑗𝑖 =  

1

2
∏  

 

𝑈 

y = h 

h 
T = 1T  y 

y = 0 
𝐵0 T = 0T  𝛿 

𝑔 

x 
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 Here ∏ is the second invariant strain tensor. We consider thefundamental Eq. (7), the case for which Υ < 1, 

and𝜇∞ = 0. We can write the component of extra stress tensor according to follows as: 

𝜏 = 𝜇(𝑇)  1 +  
𝑛−1

𝑏
 Γ𝑏𝛾  𝑏 A1          (9) 

where 𝜇0 is  the zero shear rate viscosity and γ is the strain. The Rivlin-Ericksen tensors are given by:  

A1 = ∇𝑉 + (∇𝑉 )𝑡                                                  (10) 

where (∇V ) is the fluid velocity in the Cartesian coordinates system  𝑥, 𝑦, 𝑧 and (∇V )t  is the transpose of the fluid 

velocity in the Cartesian coordinates system 𝑥, 𝑦, 𝑧  
Now  

𝛾 =  
1

2
  𝛾 𝑖𝑗 𝛾 𝑗𝑖

3
𝑗

3
𝑖 implies that 𝛾 2 =

1

2
  𝛾 𝑖𝑗 𝛾 𝑗𝑖

3
𝑗

3
𝑖  

=
1

2
 𝛾 11

2 + 𝛾 12𝛾 21 + 𝛾 13𝛾 31 +
1

2
 𝛾 12𝛾 21 + 𝛾 22

2 + 𝛾 23𝛾 32 +
1

2
 𝛾 13𝛾 31 + 𝛾 23𝛾 32 + 𝛾 33

2   

=
1

2
[ 𝛾 11

2 + 𝛾 22
2 + 𝛾 33

2  +  2𝛾 12
2 + 2𝛾 13

2 + 2𝛾 23
2  ] 

=
1

2
[ 𝛾 11

2 + 𝛾 22
2 + 𝛾 33

2  + 2 𝛾 12
2 + 𝛾 13

2 + 𝛾 23
2  ] 

=
1

2
 4 𝑢𝑥

2 + 𝑣𝑦
2 + 𝑤𝑧

2 + 2   𝑢𝑦 + 𝑣𝑥 
2

+  𝑢𝑧 + 𝑤𝑥 
2 +  𝑣𝑧 + 𝑤𝑦 

2
   

hence 

𝛾 2 = 2  
𝜕𝑢

𝜕𝑥
 

2

+  
𝜕𝑣

𝜕𝑦
 

2

+  
𝜕𝑤

𝜕𝑧
 

2

 +  
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
 

2

+  
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
 

2

+  
𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
 

2

 

The stress component are given by: 

𝜏𝑥𝑥 = 2𝜇(𝑇)  1 +  
𝑛−1

𝑏
 Γ𝑏𝛾 𝑏  

𝜕𝑢

𝜕𝑥
  

𝜏𝑦𝑦 = 2𝜇(𝑇)  1 +  
𝑛 − 1

𝑏
 Γ𝑏𝛾 𝑏  

𝜕𝑣

𝜕𝑦
  

𝜏𝑧𝑧 = 2𝜇(𝑇)  1 +  
𝑛 − 1

𝑏
 Γ𝑏𝛾 𝑏  

𝜕𝑤

𝜕𝑧
  

𝜏𝑥𝑦 = 𝜏𝑦𝑥 = 𝜇 𝑇  1 +  
𝑛−1

𝑏
 Γ𝑏𝛾 𝑏  

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
                                                                                                                          (11) 

𝜏𝑥𝑧 = 𝜏𝑧𝑥 = 𝜇(𝑇)  1 +  
𝑛−1

𝑏
 Γ𝑏𝛾 𝑏  

𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
    

𝜏𝑦𝑧 = 𝜏𝑧𝑦 = 𝜇(𝑇)  1 +  
𝑛−1

𝑏
 Γ𝑏𝛾 𝑏  

𝜕𝑣

𝜕𝑧
+

𝜕𝑤

𝜕𝑦
     

then 

𝜏𝑥𝑥 = 𝜏𝑦𝑦 = 𝜏𝑧𝑧 = 𝜏𝑥𝑧 = 𝜏𝑦𝑧 = 0                                                                                                   (12) 

𝜏𝑥𝑦 = 𝜏𝑦𝑥 = 𝜇(𝑇)  1 +  
𝑛 − 1

𝑏
 Γ𝑏𝛾 𝑏  

𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
  

implies that  

𝜏𝑥𝑦 = 𝜏𝑦𝑥 = 𝜇(𝑇)  1 +  
𝑛−1

𝑏
 Γ𝑏𝛾 𝑏  

𝜕𝑢

𝜕𝑦
                                                                                                                 (13) 

 

And the stress variable viscosity for Carreau-Yasuda fluid is: 

𝜏 𝑥𝑦    = 𝜇(𝑇)[1 +  
𝑛−1

𝑏
 Γ𝑏𝛾 𝑏 ]  

𝜕𝑢 

𝜕𝑦 
                       (14) 

where 𝑣  is the axial velocity, 𝑇  is a fluid temperature, 𝐵0 is a magnetic field strength, 𝜌  is a fluid density, 𝜍  is a 

conductivity of the fluid, 𝛽 is a coefficient of volume amplification due to temperature, 𝑔 is a hastening due to gravity, 

k is a permeability,𝑐𝑝 is a specific heat at constant pressure,𝜇(𝑇)fluid viscosity dependent on temperature, 𝐾  is a 

thermal conductivity, (0 ≤ 𝜉 ≤ 𝜋 ) is the angle between velocityfield and magnetic field strength and 𝑞 is a radioactive 

heat flux. 

The temperatures at the walls of the channel are given as: 

𝑇 = 𝑇0  at  𝑦 = 0 , and   𝑇 = 𝑇1at  𝑦 = 𝑕                     (15) 
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The radioactive heat flux [8]is given as:  

𝜕𝑞

𝜕𝑦
= 4𝜂2(𝑇0 − 𝑇)                    (16) 

The radiation absorption denoted by 𝜂. 

IV.METHOD OF SOLUTION: 

      The governing equations of the motion, we may introduce the non-dimensional conditions are as follows:  

 

𝑥 =
𝑥 

𝑕
  , 𝑦 =

𝑦 

𝑕
 , 𝑢 =

𝑢 

𝑈
 , 𝜃 =

𝑇−𝑇0

𝑇1−𝑇0
 , 𝑡 =

𝑡 𝑈

𝑕
 , 𝑝 =

𝑝 𝑕

𝜇0𝑈
 , 𝑀2 =

𝜍𝐵0
2𝑕2

𝜇0

𝐹𝑟 =
𝑈

𝑔𝑕
, 𝜇 𝜃 =

𝜇(𝑇)

𝜇0
,𝑊𝑒 =

Γ𝑈

𝑕
, 𝜏𝑥𝑥 =

𝑕

𝜇0𝑈
𝜏 𝑥𝑥    , 𝜏𝑥𝑦 =

𝑕

𝜇0𝑈
𝜏 𝑥𝑦    , 𝐷𝑎 =

𝑘

𝑕2

γ =
𝑕

𝑈
γ  , 𝑅𝑒 =

𝜌𝑕𝑈

𝜇0
 , 𝑃𝑒 =

𝜌𝑕𝑈𝑐𝑝

𝐾
 , 𝑁2 =

4𝜂2𝑕2

𝐾
, 𝐺𝑟 =

𝜌𝑔𝛽 𝑕2 𝑇1−𝑇0 

𝜇0𝑈  
 
 

 
 

             (17) 

where (𝑈) is the mean flow velocity, (𝐷𝑎) is Darcy number, (𝑅𝑒) is  Reynolds number, (𝐺𝑟) is Grashof number, (𝑀) is 

magnetic parameter, (𝑃𝑒) is the Peclet number and (𝑁) is the radiation parameter. 

𝜌(
𝑈𝜕𝑣
𝑕

𝑈
𝜕𝑡

+ 𝑈𝑢
𝑈𝜕𝑣

𝑕𝜕𝑥
+ 𝑈𝑣

𝑈𝜕𝑣

𝑕𝜕𝑦
) = −

𝜇 0𝑈

𝑕
 𝑑𝑝

𝑕 𝑑𝑦
+

𝜇 0𝑈

𝑕
𝜕𝜏𝑥𝑦

𝑕𝜕𝑥
+

𝜇 0𝑈

𝑕
𝜕𝜏𝑦𝑦

𝑕𝜕𝑦
−

𝜇 𝜃 𝜇0𝑈

𝑘
𝑣 + 𝜌𝑔cos 𝛿             (18) 

implies that   𝜌(0 + 𝑈𝑢. 0 + 𝑈𝑣. 0) = −
𝜇 0𝑈

𝑕
 𝑑𝑝

𝑕 𝑑𝑦
+ 0 + 0 − 0 + 𝜌𝑔cos 𝛿                                                           (19) 

implies that                         
 𝑑𝑝

 𝑑𝑦
= 0                                                                                                                                               (20) 

Substituting (17) into equations (1), (2),(4) and (5), we obtain:  

𝜌
𝑈2

𝑕

𝜕𝑢

𝜕𝑡
= −

𝜇0𝑈

𝑕2

𝑑𝑝

𝑑𝑥
+
𝜇0𝑈

𝑕2

𝜕𝜏𝑥𝑦

𝜕𝑦
+ 𝜌𝑔𝛽𝑇 𝑇1 − 𝑇0 𝜃𝑆𝑖𝑛 𝜉 + 𝜌𝑔𝛽𝐶 𝐶1 − 𝐶2 Φ𝑆𝑖𝑛 𝜉 − 𝜍𝐵0

2𝑆𝑖𝑛2 𝜉 𝑈𝑢

− 𝜇 𝜃 
𝜇0𝑈

𝑘
𝑢 +

𝑅𝑒

𝐹𝑟
𝑠𝑖𝑛 𝛿  

(21) 
𝜌𝑈

𝑕

𝜕(𝜃 𝑇1−𝑇0 +𝑇0))

𝜕𝑡
=

𝑘

𝐶𝑃𝑕
2 [

𝜕2(𝜃 𝑇1−𝑇0 +𝑇0))

𝜕𝑦2 −
𝑕2

𝑘
4𝜂2 𝑇0 −  𝜃 𝑇1 − 𝑇0 + 𝑇0  + 𝑄 𝜃 𝑇1 − 𝑇0  ]           (22) 

𝑈

𝑕
 𝐶1 − 𝐶2 

𝜕Φ

𝜕𝑡
=

𝑈

𝑕𝑆𝑐
 𝐶1 − 𝐶2 

𝜕2Φ

𝜕𝑦2 −
𝑈

𝑕
𝐾𝑟Φ 𝐶1 − 𝐶2 +

𝐷𝐾𝑇

𝑇𝑚

 𝑇1−𝑇0 

𝑕2

𝜕2𝜃  

𝜕𝑦2                                                                            (23) 

𝜇0𝑈

𝑕
𝜏𝑥𝑦 =

𝜇0𝑈

𝑕
𝜇 𝜃  [1 +  

𝑛−1

𝑏
 Γ𝑏𝛾 𝑏 ]  

𝜕𝑢

𝜕𝑦
                   (24) 

Finally, we get 

𝑅𝑒
𝜕𝑢

𝜕𝑡
= −

𝑑𝑝

𝑑𝑥
+

𝜕

𝜕𝑦
(𝜇 𝜃 [

𝜕𝑢

𝜕𝑦
+  

𝑛−1

𝑏
 𝑊𝑒𝑏(

𝜕𝑢

𝜕𝑦
)𝑏+1]) + 𝐺𝑟𝜃𝑆𝑖𝑛 𝜉 + 𝐺𝑐Φ𝑆𝑖𝑛 𝜉 − 𝑀1

2𝑢 −
𝜇 𝜃 

𝐷𝑎
𝑢 +

𝑅𝑒

𝐹𝑟
𝑠𝑖𝑛 𝛿        (25) 

𝑃𝑒  
𝜕𝜃

𝜕𝑡
=

𝜕2𝜃

𝜕𝑦2 + (𝑅 + 𝑄)𝜃   

 

 
𝜕Φ

𝜕𝑡
=

1

𝑆𝑐

𝜕2Φ

𝜕𝑦2 − 𝐾𝑟Φ + 𝑆𝑟
𝜕2𝜃

𝜕𝑦2                  (27) 

where 𝑀1 = 𝑀𝑆𝑖𝑛 𝜉 ,   

with the boundary conditions: 

V. REYNOLD'S MODEL OF VISCOSITY 

 

    The Reynold's model and variation of viscosity with temperature are defined as: 

𝜇 𝜃 = 𝑒−𝛼𝜃                      (28) 

By using the Maclaurin series, we get: 

𝜇 𝜃 = 1 − 𝛼𝜃 𝛼 << 1                       (29) 

In this case, the viscosity is fixedat 𝛼 = 0, by substituting Eq. (29) into Eq. (25), we get:  

𝑅𝑒
𝜕𝑢

𝜕𝑡
= −

𝑑𝑝

𝑑𝑥
+

𝜕

𝜕𝑦
  1 − 𝛼𝜃 [

𝜕𝑢

𝜕𝑦
+  

𝑛−1

𝑏
 𝑊𝑒𝑏(

𝜕𝑢

𝜕𝑦
)𝑏+1] + 𝐺𝑟𝜃𝑆𝑖𝑛 𝜉 + 𝐺𝑐Φ𝑆𝑖𝑛 𝜉 − 𝑀1

2𝑢 −
 1−𝛼𝜃  

𝐷𝑎
𝑢 +

𝑅𝑒

𝐹𝑟
𝑠𝑖𝑛 𝛿 (30)      

http://www.ijarset.com/


      
         

        
ISSN: 2350-0328 

International Journal of Advanced Research in Science, 

Engineering and Technology 

Vol. 6,  Issue 8 , August 2019 

 

Copyright to IJARSET                                                           www.ijarset.com                                                                      10385 

 

 

 

 

Solution of Motion Equation: 

Poiseuille flow   

      We suppose that the rigid flakes are at 𝑦 = 0 and 𝑦 = 𝑕 are at rest. Therefore  

𝑢 = 0 at  𝑦 = 0, and 𝑢 = 0 at  𝑦 = 𝑕   

The non-dimensional boundary conditions are as follows: 

𝑢(0) = 0 , 𝑢(1) = 0 .             (31) 

To solve the momentum Eq. (30), let 

−
𝑑𝑝

𝑑𝑥
= 𝜆𝑒𝑖𝜔𝑡  ; 𝑢 𝑦, 𝑡 = 𝑓(𝑦)𝑒𝑖𝜔𝑡            (32) 

By substituting Eq. (32) into Eq. (30), we equalize the powers of (𝑊𝑒), and we obtain:   

𝑅𝑒
𝜕

𝜕𝑡
𝑓 𝑦 𝑒𝑖𝜔𝑡 = 𝜆𝑒𝑖𝜔𝑡 +  1 − 𝛼𝜃 

𝜕

𝜕𝑦
 𝑒𝑖𝜔𝑡

𝜕

𝜕𝑦
𝑓(𝑦) +  

𝑛−1

𝑏
 𝑊𝑒𝑏𝑒𝑖𝜔  𝑏+1 𝑡(

𝜕

𝜕𝑦
𝑓(𝑦))𝑏+1 + 𝐺𝑟𝜃𝑆𝑖𝑛 𝜉 +

𝐺𝑐Φ𝑆𝑖𝑛 𝜉 − 𝑀1
2𝑓 𝑦 𝑒𝑖𝜔𝑡 −

 1−𝛼𝜃  

𝐷𝑎
𝑓 𝑦 𝑒𝑖𝜔𝑡 +

𝑅𝑒

𝐹𝑟
𝑠𝑖𝑛 𝛿                                                                                             (33) 

implies that 

𝑅𝑒 𝑖𝜔𝑒𝑖𝜔𝑡 𝑓(𝑦) = 𝜆𝑒𝑖𝜔𝑡 +  1 − 𝛼𝜃  𝑒𝑖𝜔𝑡
𝜕2

𝜕𝑦2 𝑓(𝑦) +  
𝑛−1

𝑏
 (𝑏 + 1)𝑊𝑒𝑏𝑒𝑖𝜔 (𝑏+1)𝑡(

𝜕

𝜕𝑦
𝑓(𝑦))𝑏

𝜕2

𝜕𝑦2 𝑓(𝑦) + 𝐺𝑟𝜃 −

𝑀1
2𝑓(𝑦)𝑒𝑖𝜔𝑡 −

 1−𝛼𝜃  

𝐷𝑎
𝑓(𝑦)𝑒𝑖𝜔𝑡 +

𝑅𝑒

𝐹𝑟
𝑠𝑖𝑛 𝛿                    (34)  

implies that 

𝑅𝑒 𝑖𝜔𝑓 𝑦 = 𝜆 +  1 − 𝛼𝜃  
𝜕2

𝜕𝑦2 𝑓(𝑦) +  
𝑛−1

𝑏
 (𝑏 + 1)𝑊𝑒𝑏𝑒𝑖𝜔𝑏𝑡 (

𝜕

𝜕𝑦
𝑓(𝑦))𝑏

𝜕2

𝜕𝑦2 𝑓(𝑦) + 𝐺𝑟𝜃0𝑆𝑖𝑛 𝜉 + 𝐺𝑐Φ0𝑆𝑖𝑛 𝜉 −

𝑀1
2𝑓 𝑦 −

 1−𝛼𝜃  

𝐷𝑎
𝑓 𝑦 +

𝑅𝑒

𝐹𝑟
𝑠𝑖𝑛 𝛿                                                                                                                                         (35) 

Equation (35) is a non-linear differential equation and it is hard to find an exactsolution, so will be used the 

perturbation technique to find the problem solution, as follows:                                                     

𝑓 = 𝑓0 + 𝑊𝑒𝑏𝑓1 + O(𝑊𝑒2𝑏)              (36) 

Now, By substituting Eq. (36) and Eq. (32) into Eq. (35), we obtain:   

𝑅𝑒 𝑖𝜔 𝑓0 + 𝑊𝑒𝑏𝑓1 = 𝜆 + 𝐺𝑟𝜃0(𝑦)𝑆𝑖𝑛 𝜉 + 𝐺𝑐Φ0(𝑦)𝑆𝑖𝑛 𝜉 +
𝑅𝑒

𝐹𝑟
𝑠𝑖𝑛 𝛿                                                                          

(37) 

implies that 
𝑅𝑒 𝑖𝜔𝑓0 + 𝑊𝑒𝑏𝑓1𝑅𝑒𝑖𝜔

= 𝜆 + 𝐺𝑟𝜃0𝑆𝑖𝑛 𝜉 + 𝐺𝑐Φ0𝑆𝑖𝑛 𝜉 +
𝑅𝑒

𝐹𝑟
𝑠𝑖𝑛 𝛿 −  𝑀1

2 +
 1 − 𝛼𝜃 

𝐷𝑎
 𝑓0 −𝑊𝑒𝑏  𝑀1

2 +
 1 − 𝛼𝜃 

𝐷𝑎
 𝑓1 

+ 1 − 𝛼𝜃 
𝜕2𝑓0

𝜕𝑦2 + 𝑊𝑒𝑏 1 − 𝛼𝜃 
𝜕2𝑓1

𝜕𝑦2 + 𝑒𝑏𝑖𝜔𝑡  1 − 𝛼𝜃  𝑏 + 1  
𝑛−1

𝑏
  (

𝜕𝑓0

𝜕𝑦
 )𝑏

𝜕2𝑓0

𝜕𝑦2 𝑊𝑒𝑏          (38) 

i - Zeroth-order system (𝑾𝒆𝟎) 

𝑅𝑒 𝑖𝜔𝑓0 = 𝜆 + 𝐺𝑟𝜃0𝑆𝑖𝑛 𝜉 + 𝐺𝑐Φ0𝑆𝑖𝑛 𝜉 +
𝑅𝑒

𝐹𝑟
𝑠𝑖𝑛 𝛿 −  𝑀1

2 +
 1−𝛼𝜃  

𝐷𝑎
 𝑓0 +  1 − 𝛼𝜃 

𝜕2𝑓0

𝜕𝑦2         
                            (39) 
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The associated boundary conditions are: 

𝑓0 0 = 𝑓0 1 = 0           (40) 

ii - First-order system (𝑾𝒆𝒃) 

𝑅𝑒 𝑖𝜔𝑓1 = − 𝑀1
2 +

 1−𝛼𝜃  

𝐷𝑎
 𝑓1 +  1 − 𝛼𝜃 

𝜕2𝑓1

𝜕𝑦2 + 𝑒𝑏𝑖𝜔𝑡  1 − 𝛼𝜃  𝑏 + 1  
𝑛−1

𝑏
 (

𝜕𝑓0

𝜕𝑦
 )𝑏 .

𝜕2𝑓0

𝜕𝑦2                               (41) 

The associated boundary conditions are: 

𝑓1 0 = 𝑓1 1 = 0                                                   (42) 

Finally, the perturbation solutions up to second term for 𝑓are given by: 

𝑓 = 𝑓0 + 𝑊𝑒𝑏𝑓1 + O 𝑊𝑒2𝑏                                                                                                                                                 (43) 

VI .RESULTS AND DISCUSSION 

We discuss the influence of MHD oscillatory slip flow for Carreau-Yasuda fluid through inclined channel with varying 

temperature and concentration in some results through the graphical illustrations. Numerical assessments of analytical 

results and some of the graphically significant results are presented in Figs. (2-11). We use the (MATHEMATICA-11) 

program to find the numerical results and illustrations. The momentum equation is resolved by using perturbation 

technique and all the results are discussed graphically. Fig.(2) shows the temperature increases with the increase in 

𝑅.Fig.(3). show us that with the increasing of 𝜔 the temperature 𝜃 decreases. Fig.(4) we observed that the influence 𝜔 

in concentration profile Φ by the increasing 𝜔 then Φ decreases. The concentration profile Φ decreases with increase 𝑅 

in Fig. (5).Fig. (6)andFig. (7) show the velocity profile 𝑢increasing with the increasing 𝛿 𝑎𝑛𝑑 𝜉.Fig.(8) illustrates the 

influence 𝐹𝑟 on the velocity profiles function 𝑢  vs. 𝑦. It is found by increasing 𝐹𝑟  the velocity profile function 𝑢 

decreases.Fig. (9) shows that velocity profile 𝑢 rising up by the increasing influence the parameter 𝜆.Fig. (10),Fig. 

(12)and Fig. (13) illustrate the influence 𝐺𝑐, 𝐷𝑎 and 𝐺𝑟 on the velocity profiles function 𝑢 vs. 𝑦. It is found by the 

increasing 𝐺𝑐, 𝐷𝑎 and 𝐺𝑟  the velocity profiles function 𝑢 increases. Fig. (12) illustrates the influence 𝑀 on the velocity 

profiles function 𝑢 vs. 𝑦. It is found by increasing 𝑀 the velocity profile function 𝑢 decreases. 

 

 
                                                                                            Fig.(2) Influence of R on Temperature for t = 0.5, ω = 1, Q = 2, Pe = 0.7. 
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Fig.( 4) Influence of 𝑅 on concentration for Sr = 0.1, Sc = 0.6, Q = 2, Pe = 0.7,𝜔 = 1, Kr = 0.5. 

Fig.(5)Influence of 𝜔 on concentration for Sr = 0.1, R = 2, Q =
2, Pe = 0.7, Kr = 0.5, Sc = 0.6, t = 0.5. 

 
                                                                                                               Fig.(7)Velocity profile for  ξ  with Sc = 0.6, Gc = 1, R =
                                                                                                                            2, Pe = 0.7, λ = 1, Q = 2, Sr = 0.1,ω = 1, Re = 1, Da =
                                                                                                                               0.8, Gr = 1, M = 1, Kr = 0.5, We = 0.05, t = 0.5. 

 

 
 
Fig.(9)Velocity profile for  λ with Gc = 1, R = 2, Pe =

0.7, ξ =
𝜋

4
, Sr = 0.1, Q = 2, Sc = 0.6,ω = 1, Re = 1, Da = 0.8, Gr =

1, M = 1, Kr = 0.5, We = 0.05, t = 0.5 
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                                                                                                                         Fig.(11) Velocity profile for M  with R = 2, Q = 2, Pe =

                                                                                                                                       0.7, ξ =
𝜋

4
, Sr = 0.1, Kr = 0.5, Sc = 0.6, ω = 1, Re = 1, Gr =

                                                                                                                                            1, Gc = 1, Da = 0.8, λ = 1, We = 0.05, t = 0.5. 

 

 

 

 
                                                                                                                           Fig.(13) Velocity profile for  Gr with R = 2, Q = 2, ξ =

                                                                                                                                             
𝜋

   4
, Pe = 0.7, Sr = 0.1, Kr = 0.5, Sc = 0.6,ω =

                                                                                                                                                   1, Re = 1, Da = 0.8, Gc = 1, M = 1, λ = 1, We =
                                                                                                                                                0.05, t = 0.5. 

 

VII.CONCLUSION AND REMARKS 

 
We discuss the Influence of Varying Temperature and Concentration on (MHD) Oscillatory Slip Flow for Carreau-

YasudaFluid with variable Viscosity through an inclined Channel are found analytical, and use different values to find the 

results of pertinent parameters, namely for the velocity andtemperature. The key point is listed below: 

i. The velocity profiles increase with increasing 𝛿, 𝜉, 𝐺𝑐, 𝐺𝑟, 𝑎𝑛𝑑 𝐷𝑎for the Poiseuille. 

ii. The velocity profiles decrease with increasing magnetic parameter a , 𝐹𝑟 𝑎𝑛𝑑 𝑀. for the Poiseuille flow. 

iii. Show that by the increase of R the temperature increases and by the increase of w the temperature decreases.  

iv. Show that by the increase of R the concentration decreases and by the increase of w the concentration decreases. 
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