

ISSN: 2350-0328

International Journal of Advanced Research in Science, Engineering and Technology

Vol. 6, Issue 8, August 2019

Ro-Lindel of Space

Qassim Ali Shaker

Department of mathematic Science, College Of computer Science and InformationTechnology, University of Al-Qadisiyah , Diwaneyah – Iraq.

ABSTRACT: In this paper give a generalization of Lindelof spaces is called ro-Lindelof (resp., ro-almost Lindelof) if every regular open cover Ω of (X, τ) has a countable subcover (resp. a countable subfamily $\{A_n : n \in \mathbb{N}\}$ satisfy $X = \bigcup_{n \in \mathbb{N}} Cl(A_n)$). Some characterizations and properties of ro-Lindelof spaces are given.

KEY WORDS: Topological Space, ro-Lindelof, ro-almost Lindelof,

I.INTRODUCTION

In [1,2,3,4,6 and 7], some generalizations of Lindelof space were introduced and studied, a topological space (X, τ) is called almost Lindelof (resp.,nearly Lindelof) if every open cover Ω of (X, τ) has a countable subfamily $\{A_n : n \in \mathbb{N}\}$ satisfy $X = \bigcup_{n \in \mathbb{N}} Cl(A_n)$) (resp., $X = \bigcup_{n \in \mathbb{N}} int(Cl(A_n))$). Also (X, τ) is called *I*-Lindeloffi every regular closed cover Ω of (X, τ) has a countable subfamily $\{A_n : n \in \mathbb{N}\}$ satisfy $X = \bigcup_{n \in \mathbb{N}} Cl(A_n)$) (resp., $X = \bigcup_{n \in \mathbb{N}} int(Cl(A_n))$). Also (X, τ) is called *I*-Lindeloffi every regular closed cover Ω of (X, τ) has a countable subfamily $\{A_n : n \in \mathbb{N}\}$ satisfy $X = \bigcup_{n \in \mathbb{N}} int(A_n)$. Throughout this paper denote the interior and closure of any subset A of X by int(A) and Cl(A) respectively. A subset G of a space (X, τ) is called regular open (resp., regular closed) if G = int(Cl(G)) (resp., G = Cl(int(G)). In [1], a topological space (X, τ) is called extremally disconnected (e.d.) if Cl(G) is open for each open set G and this equivalently, $Cl(A) \cap Cl(B) = \emptyset$ for every regular open sets A and B with $A \cap B = \emptyset$. In this work, we introduce the concept ro-Lindelof space and some characterizations.

Firstly, we introduce the following definition:

Definition 1. A topological space (X, τ) is called ro-Lindelof (resp. ro-almost Lindelof) if every regular open cover Ω of (X, τ) has a countable subcover (resp. a countable subfamily $\{A_n : n \in \mathbb{N}\}$ satisfy $X = \bigcup_{n \in \mathbb{N}} Cl(A_n)$).

II. MAIN RESULTS

Clearly, every ro-Lindelof space is ro-almost Lindelof. In the following some results on this classes of topological spaces:

Theorem 2. The following hold for any topological space (X, τ) :

- (1) (X, τ) is ro-almost Lindelof iff every family Ω of regular closed subset of X with $\bigcap_{U \in \Omega} U = \emptyset$ contains a countable subfamily Γ such that $\bigcap_{U \in \Gamma} int(U) = \emptyset$
- (2) (X, τ) is ro-Lindelof iff every family Ω of regular closed subset of X with $\bigcap_{U \in \Omega} U = \emptyset$ contains a countable subfamily Γ such that $\bigcap_{U \in \Gamma} U = \emptyset$.

Proof. (1) Let $\Omega = \{U_{\alpha} : \alpha \in I\}$ be a family of regular closed subsets of (X, τ) such that $\cap \{U_{\alpha} : \alpha \in I\} = \emptyset$. Then the family $\{X - U_{\alpha} : \alpha \in I\}$ forms a cover of the (X, τ) by regular open subsets, since (X, τ) is ro-almost Lindelof, so I contains a countable subset I' such that $X = \bigcup \{Cl(X - U_{\alpha}) : \alpha \in I'\}$, and this implies that $\emptyset = X - \bigcup \{Cl(X - U_{\alpha}) : \alpha \in I'\} = \cap \{X - (Cl(X - U_{\alpha})) : \alpha \in I'\} = \cap \{int(U_{\alpha}) : \alpha \in I\}$.

Conversely, let $\psi = \{G_{\alpha} : \alpha \in I\}$ be a cover by regular open sets of (X, τ) , then $\cap \{X - G_{\alpha} : \alpha \in I\} = \emptyset$. By assumption there exists $I' \subseteq I$ with $\cap \{int(X - G_{\alpha}) : \alpha \in I'\} = \emptyset$, so $X = X - \cap \{int(X - G_{\alpha}) : \alpha \in I'\} = \cup \{X - int(X - G_{\alpha}) : \alpha \in I'\} = \cup \{Cl(G_{\alpha}) : \alpha \in I'\}$.

(3) Similarly.

Theorem 3. Every nearly Lindelof space is ro-Lindelof.

ISSN: 2350-0328

International Journal of Advanced Research in Science, Engineering and Technology

Vol. 6, Issue 8, August 2019

Proof. Let $\{U_{\alpha}: \alpha \in I\}$ be a cover of (X, τ) by regular open sets, thus there is countable subset I' of I such that $X = \bigcup \{int(Cl(U_{\alpha})): \alpha \in I'\}$ because the topological space is Lindelof. Since $int(Cl(U_{\alpha})) = U_{\alpha}$, hence $X = \bigcup \{U_{\alpha}: \alpha \in I'\}$.

Theorem 4. Every e.d. ro-almost Lindelof space is nearly Lindelof.

Proof. Let $\{U_{\alpha} : \alpha \in I\}$ be an open cover of (X, τ) . Since (X, τ) is e.d., then $\{Cl(U_{\alpha}) : \alpha \in I\}$ forms regular open cover. Thus there exists countable subset I' of I such that $X = \cup \{Cl(U_{\alpha}) : \alpha \in I\} = \cup \{int(Cl(U_{\alpha})) : \alpha \in I\}$.

By Theorem 3, Theorem 4 and [1, Theorem 1.19], we have the following diagram:

I-Lindelof \Leftrightarrow e.d. nearly Lindelof \Leftrightarrow e.d. ro-Lindelof \Leftrightarrow e.d. ro-almost Lindelof

Theorem 5. If a space (X, τ) is a countable union of closed ro-almost Lindelof subspaces then it is ro-almost Lindelof. **Proof.** Assume that $X = \bigcup \{F_n: n \in \mathbb{N}\}$, where (F_n, τ_{F_n}) is closed ro-almost Lindelof subspaces for all $n \in \mathbb{N}$. Let Γ be a regular open cover of (X, τ) , then the family $\{A \cap F_n: A \in \Gamma\}$ is a regular open cover of (F_n, τ_{F_n}) . By hypothesis, $F_n = \bigcup \{Cl_{F_n}(A \cap F_n): A \in \Gamma\}$. So, we have that $X = \bigcup_{n \in \mathbb{N}} \{\bigcup \{Cl_{F_n}(A \cap F_n): A \in \Gamma\}\} = \bigcup_{n \in \mathbb{N}} \{\bigcup \{Cl_X(A \cap F_n): A \in \Gamma\}\}$ is ro-almost Lindelof.

Definition 6 [4]. Let (X, τ) and (Y, σ) are topological spaces and $f: X \to Y$ function, we call that:

- (1) δ -continuous if for every $x \in X$ and each regular open set V in Y containing f(x) there is regular open set U in X containing x such that $f(U) \subseteq V$.
- (2) Almost δ -continuous if for every $x \in X$ and each regular open set V in Y containing f(x) there is regular open set U in X containing x such that $f(U) \subseteq Cl(V)$.

Theorem 7. Let $f: (X, \tau) \to (Y, \sigma)$ be δ -continuous surjection map, if X is ro-Lindelof then Y is ro-Lindelof.

Proof. Let $\{V_{\alpha}: \alpha \in \Delta\}$ be a regular open cover of *Y*. Let $x \in X$ and V_{α_x} be an regular open set in *Y* such that $f(x) \in V_{\alpha_x}$. Since *f* is δ -continuous then there is regular open set U_{α_x} of *X* containing *x* such that $f(U_{\alpha_x}) \subseteq V_{\alpha_x}$. Now, $\{U_{\alpha_x}: x \in X\}$ is a regular open cover of *X*, so by hypothesis there exists countable subcover $\{U_{\alpha_{x_n}}: n \in \mathbb{N}\}$ and hence $Y = f(X) = f(\bigcup_{n \in \mathbb{N}} U_{\alpha_{x_n}}) = \bigcup_{n \in \mathbb{N}} f(\bigcup_{n \in \mathbb{N}} U_{\alpha_{x_n}}) \subseteq \bigcup_{n \in \mathbb{N}} V_{\alpha_{x_n}}$.

Theorem 8. Let $f:(X,\tau) \to (Y,\sigma)$ be almost δ -continuous surjection map, if X is ro-Lindelof then Y is ro-almost Lindelof.

Proof. Let $\{V_{\alpha}: \alpha \in \Delta\}$ be a regular open cover of *Y*. Let $x \in X$ and V_{α_x} be an regular open set in *Y* such that $f(x) \in V_{\alpha_x}$. Since *f* is almost δ -continuous then there is regular open set U_{α_x} of *X* containing *x* such that $f(U_{\alpha_x}) \subseteq Cl(V_{\alpha_x})$. Now, $\{U_{\alpha_x}: x \in X\}$ is a regular open cover of *X*, so there exists countable subfamily $\{U_{\alpha_{x_n}}: n \in \mathbb{N}\}$ such that $X = \bigcup_{n \in \mathbb{N}} U_{\alpha_{x_n}}$. Therefore $Y = f(X) = f(\bigcup_{n \in \mathbb{N}} U_{\alpha_{x_n}}) = \bigcup_{n \in \mathbb{N}} f(\bigcup_{n \in \mathbb{N}} U_{\alpha_{x_n}}) \subseteq \bigcup_{n \in \mathbb{N}} Cl(V_{\alpha_{x_n}})$.

Theorem 9. The following statements are equivalent for any topological space (X, τ) :

- (1) X is ro-Lindelof.
- (2) Every cover of X by form

 $\{U \subseteq X : \forall x \in U \exists V_x \text{ regular open set containing } x \text{ such that } V_x - U \text{ is a countable set} \}$ has a countable subcover.

Proof. (1) \Rightarrow (2) Let { G_{α} : $\alpha \in \Delta$ } be a hypothesis cover in (2). For every $x \in X$, there exists $\alpha_x \in \Delta$ such that $x \in G_{\alpha_x}$. Thus there exists regular open set V_{α_x} containing x and $V_{\alpha_x} - G_{\alpha_x}$ is countable. It is clear that { V_{α_x} : $x \in X$ } is a regular open cover of X, so there exists countable subcover { $V_{\alpha_x(n)}$: $n \in \mathbb{N}$ }. Therefore,

ISSN: 2350-0328

International Journal of Advanced Research in Science, Engineering and Technology

Vol. 6, Issue 8, August 2019

$$X = \bigcup_{n \in \mathbb{N}} V_{\alpha_{x(n)}}$$
$$= \bigcup_{n \in \mathbb{N}} ((V_{\alpha_{x(n)}} - G_{\alpha_{x(n)}}) \cup G_{\alpha_{x(n)}})$$
$$= (\bigcup_{n \in \mathbb{N}} (V_{\alpha_{x(n)}} - G_{\alpha_{x(n)}})) \cup (\bigcup_{n \in \mathbb{N}} G_{\alpha_{x(n)}})$$

For each $n \in \mathbb{N}$, $V_{\alpha_{x(n)}} - G_{\alpha_{x(n)}}$ is a countable set, so there exists a countable subset $\Delta(n)$ of Δ such that $V_{\alpha_{x(n)}} - G_{\alpha_{x(n)}} \subseteq \bigcup \{G_{\alpha}: \alpha \in \Delta(n)\}$ and this leads to $X \subseteq (\bigcup_{n \in \mathbb{N}} (\bigcup \{G_{\alpha}: \alpha \in \Delta(n)\})) \cup (\bigcup_{n \in \mathbb{N}} G_{\alpha_{x(n)}})$ and this implies that (2) is hold.

(2)⇒(1) Since every regular open set *U*, we have $U - U = \emptyset$ countable, thus every regular open cover of *X* admits a countable subcover.

REFERENCES

[1] K. Al-Zoubi and B. Al-Nashef, I-Lindelof spaces, IJMMS 43(2004), 2299-2305.

[2] F. Cammaroto and G. Santoro, Some Counterexamples and Properties on Generalizations of Lindelof Spaces, Int.J. Math.& Math. Sci 19(1996), 737-746.

[3] A.J. Fawakhreh and A. Kilicman, On Generalizations of Regular-Lindelof Spaces, IJMMS 27:9(2001), 535-539.

[4] A.J. Fawakhreh and A. Kilicman, Mapping and Decompositions of Continuity on Almost Lindelof Spaces , IJMMS (2006), 1-7.

[5] W. J. Pervn , Foundation of General topology, Acadmicpres, 1964.

[6] M. S. Sarsak, More on rc-Lindelof sets and Almost rc-Lindelof sets, IJMMS (2006), 1-9

[7] Yan-Kui Song, Some Topological Properties weaker than Lindelofness, MathematichkiVesnik 60(2008),