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ABSTRACT: The results of the formation of regular algorithms for identifying the parameters of an object and a 

controller in a closed-loop control system are presented. Taking into account that the initial system of equations for 

estimating the parameters of an object and a controller is, as a rule, poorly conditioned, it becomes necessary to use 

methods for solving incorrect problems. To stabilize the solution of the considered estimation problem, the concepts of 

the principle of iterative regularization using the method of variational inequalities are used. Algorithms for the 

iterative sequence and stopping the iterative process are provided that ensure the convergence of the desired estimates 

of the parameters of the object and the controller almost certainly to the true values. 
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I. INTRODUCTION 

 

A promising direction for creating a general method for the synthesis of operational identification algorithms can be the 

basic provisions according to which the identification system should be presented in the form of a closed dynamic 

system in which the object model is the structure of the object model [1-3]. This approach gives positive results in the 

formation of structures of filtering algorithms and dynamic observers. 

 

Based on the theoretical provisions [4,5] and developments on the synthesis of state observers [6], it seems appropriate 

to consider the identifier structure in the form of a closed dynamic system. The control object in this case is a model of 

an object of a given structure with unknown parameters, and parametric control is developed by the regulator from the 

condition of minimizing the norm from the output effects of the model and the full-scale object [7]. With this 

representation of the identifier structure for the synthesis of the regulator, one can use well-developed methods of 

control theory. The meaningful statement of the problem in this case is reduced to the following scheme. 

 

The general structure of the identifier is given in the form of a closed dynamic system (see Fig. 1); many structures of 

object models, assignment to error properties Y . It is necessary to synthesize identification algorithms. 

 

The presented statement of the problem differs in that it is proposed to synthesize a dynamic feedback system for 

identifying the coefficients. Moreover, in the synthesis of identification algorithms, models and algorithms of the 

theory of automatic regulation are used. 

 

It is precisely this formulation of the problem that makes it possible to fully utilize the achievements of the modern 

theory of automatic control and expand the list of object models, including dynamic objects of complex structure. 
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When solving such problems, it is often not possible to open feedback due to the fact that it is an integral part of the 

system under study or for safety reasons, when an open circuit is unstable or stringent requirements are imposed on the 

system not to leave its parameters for some given area. In addition, the data obtained from the results of the operation 

of the system in a closed loop more accurately reflect the real situation compared with the data obtained by opening the 

feedback [1,8]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. General identifier structure: W, U, Y – measured external, control and output actions;  

Up – parametric control action on the object model; Y  – modeling error. 

 

Currently, there is no universal approach to the identification of closed systems. In each case, different models, 

methods, techniques and algorithms are used [9-12]. 

 

II. FORMULATION OF THE PROBLEM 

 

Consider the class of models with noise in the object and control device, which is widely used in practical problems. 

This class of control systems with noise in the object and the control device can be described by equations of the form 

[2,3]: 
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where {un}, {уn} – observed sequences at the input and output of the object, respectively; {v1n}, {v2n} – Gaussian 

sequences with zero expectation and unit dispersion; joint distribution is Gaussian. Wherein 
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 nmnmmn juvM  ,11),1(][ 21  Kronecker symbol. It is necessary to evaluate the parameters of 

the object  {ai}, {bi}  and control device  {сi}, {di}  according to the observation {un}, {уn}, where n = 0, 1, … , N. 

 

Based on [2,3,13] the system of equations (1) with zero initial conditions can be written in the following matrix form 
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III. SOLUTION OF THE TASK 

 

By the Gaussian assumption, the joint density of a sequence of random variables 0011 ,,,,,, uyuyuy NNNN   will 

have the form 
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Then, to evaluate the parameters of the object and the control device, you can use the following system of equations 

.      (4) 
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In (4), S linear bounded irreversible operator acting in a Hilbert space (sometimes from H1 to H2), the balance relation 

being complicated by the requirement, Q , Q –is a closed convex set in. 
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Under the above assumptions, the solution to problem (4) may be absent or unstable to small variations of the initial 

data. This means that when solving equation (4), regular methods should be used [14–20]. One of the classical methods 

for solving linear and nonlinear equations is the regularization of these equations by a small term that improves their 

qualitative characteristics, with the subsequent derivation of a priori estimates of the solutions and the regularization 

parameter tending to zero. One of the main approaches to the construction of such algorithms is the principle of 

iterative regularization [16, 20]. 

 

It is known [16-18] that the solution of an operator equation of type (4) can be reduced to the problem of minimizing 

the residual functional, that is, finding a quasisolution of the equation on Q in  sense of V.K. Ivanov. As a residual, we 

can take a functional of the form 

2
)(

H
yS   .  

The problem of finding the minimum of a convex functional )(  on closed convex set  HQ   equivalent to the 

problem of solving the variational inequality [16] 

QddF  0)),((  ,      (5) 

if for example, )(  has a subdifferential F  at every point Q. In this case, in (5), as F, we can choose the 

subdifferential )( , F , QDF  ,  or ordinary gradient in differentiable case [16-18]. Insofar as S – lineat 

operator acting in H, then functiona )(  is convex and has a subdifferential. 

 

To make an item Q  was a solution to inequality  (5), when  F acts in Hilbert space Н,  necessary and sufficient to 

  satisfied the equation 

))((  FPQ        (6) 

for some  0 . Here QP  – the metric projection onto Q. If equation (6) is satisfied for some 0 , then it is valid 

for a given   for an  0 . 

 

If )(  is a convex functional, then )(F  is a monotone operator [19]. The monotonicity of the operator )(F  

means that for all elements of Gd,  the condition 

QFF  211212 ,,0)),()((  ,     (7) 

where the bracket ),(   on the left side of (7) means the scalar product. 

  

Thus, it is necessary to determine those   that satisfy the variational inequality (5), where )(F  is the monotone 

operator. 

 

Let )(M  be an operator possessing the property of strong monotonicity HQ  , i.e.  

0,)),()((
2

212121  MMMM  . 

 

When solving equation (4), instead of the main inequality (5), it is advisable to use the family of auxiliary inequalities 

0,,0)),()((   QddMF .              (8) 
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The variational inequalities (8) have significantly better properties, since the operator )()(  MF   is strongly 

monotone for a fixed 0 , and standard iterative methods are applicable for solving them [16-18]. On the other hand, 

variational inequalities (8) for 0  have approximating Browder – Tikhonov properties [20] for problem (5). 

 

In this case, you can, for example, accept  )(M  and 1M . Inequality (8) can be called a regularized 

inequality. The additive is similar to the stabilizing additive of A.N. Tikhonov in the theory of incorrectly posed 

extremal problems. 

 

If we assume only the existence of a solution to problem (5), then under broad assumptions about F and М [16], it can 

be argued that for any 0  there is   - the only solution (8) and, moreover, there exists a limit relation 
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where *  is the only solution to the variational inequality  ddM ,0)),((  ,   is the set of 

solutions (4). 

 

Following [20], it can be shown that under the conditions considered above, the iterative sequence r̂  can be written in 

the following form: 
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where QP  is the metric projector; 00,  rr   - regularization parameters, r – iteration number, 
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The iterative process under consideration can be stopped on the basis of relations of the form [16]: 
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The parameter   characterizes the error level of the job F and is assumed to be known, with 

F   FFF ,0,)( , where F is a class of approximate operators. 

 

IV. CONCLUSION 

 

The developed regular algorithms for identifying the parameters of an object and a regulator in a closed-loop control 

system based on the principle of iterative regularization using the method of variational inequalities ensure the 

convergence of the desired estimates of the parameters of the object and the regulator almost surely to true values. 
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