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1. INTRODUCTION 

 

Signal and images filtration in spectral sphere, multiplexing, new mathematical method and algorithm creation 

of interpolation and decimation as well as the software development for their special processors and network computers 

are considered as a culmination problem in these days. In this case geodesy, cartography spheres, space research and 

the digital process of medical images can be taken as a exploration object. These questions in the same time are learned 

and handled in timing or spectral sphere. If the research goes in the timing sphere, the quality of created algorithm data 

will be decreased, other than that in spectral sphere such kind of idiosyncrasies not only will be explored but incognito 

information will also be found.  In this article the receipt and the grouping of spectral coefficients of signal processing 

and images by using the spectral method based on Wavelet-Haar basis matrix and the coefficients of orthogonal 

Chebyshev’s polynomials are presented [3], [4], [5]. 

 
II. THE PURPOSE OF THE TASK 

 

Chebyshev orthogonal polynomials accidental central value is evaluated with the step 
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Polynomial appearance is expressed like following:  
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by this formula coefficient  is evaluated. Here  
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Chebyshev orthogonal polynomials beginning and first coefficients:  

    uupup  10 ,1        (3) 

and others are found by following recurrent formulas:   
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H j and 
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  in this formula are calculated by following:  
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here is    12...531!!12  jj . For example, 
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8 terms of orthogonal polynomials are formulated by following appearance: 
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In order to renew and analyse the given signal, this should be taken in the following algebraic polynomial form:   
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Input signal spectre  tWs  is formulated by the following formula with the help of kA  coefficient in the 

Uolsh – Adamar basis:  
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here 
k

sb  - 
kt  are spectral coefficients of grade polynomial  [2].  

By using spectral method kA  coefficient can be calculated efficiently. For this with the help of (1) formula 

and by using basis  tWs  and Parseval’s theorem following form will be taken:  
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here 
k

sc  -  tpk  is Chebyshev’s polynomial spread spectral coefficient in  tWs  basis.  

It is obvious by (6) and (7) formulas, if there were 3k  and 8N   
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would be originated.  

Chebyshev’s polynomial basis matrix in ]1;1[  interval on  basis of  (4) form will be like following [1], [3]: 
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sc  coefficients  tpk  matrix when spreading by   tWs  basis matrix is created like that:  
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By using (9) and  (5)  formulas 
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is  realized .  

By these forms output signal’s analytic is found:  
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Mixed Chebyshev’s polynomial in ]1;0[ interval is calculated by following[5]:  
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III. FUNCTION MODULE 

 

Even when using this and (9) expressions for k=3 and N=8 the accuracy of (11) formulas will be originated.  

With the help of  Wavelet – Haar change [4] and  Chebyshev’s polynomial input )(x signal when being 

transferred to polynomial form when aforementioned method is used  
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will be originated . 

By the same method, with the help of Wavelet – Haar change [4] and  Chebyshev’s polynomial input 

)(x signal when being transferred to polynomial form  
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will be created.  

 

IV. CONCLUSION 

 

Taken polynomial coefficients with the help of (11), (12) and (13) expressions are respectively equal which 

was proved in practice. By this it can be concluded that, by this method no matter what kind of basis matrix and change 

are used, any way traceable polynomial coefficients are respectively equal.   

As well as, in (11) and (12) forms spectral coefficients are used by 8. In order to find Wavelet-Haar 

changeable spectral coefficients 24 summation and 14 shift (multiple operation replacement in numerical registers) 

operations are completed. In order to find Uolsh-Adamar changeable spectral coefficients  89 summation and 24 shift 

operations are completed. This in the same time in the aforementioned method, Wavelet-Haar change usage gives 

opportunity to win by time and decreases the call to the memory.  The usage of these methods elementary functions 

(cosx, sinx, lnx, logx, 
xn exx ,, ) for signal processors formulating in the form of polynomial differ from other 

methods by lack of operations (Taylor’s row, Makloren’s row, limited differential method, the most small quadratic 

method and many more). 
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