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ABSTRACT: Stable algorithms for diagnosing nonlinear dynamic systems in the presence of disturbing factors are 

presented. In this case, the diagnostic process includes the procedure for the formation of a residual as a result of a 

mismatch between the behavior of the system being diagnosed and its reference model. To obtain a stable 

representative value of the extended state vector, a regular algorithm based on the Hermite method is used. The 

obtained regular algorithm allows the programmed motion to be carried out according to the desired law of change in 

time of the state vector and ensures the convergence of the system motion to a certain neighborhood with respect to the 

reference motion. 
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I. INTRODUCTION 

Currently, a significant number of different methods for solving diagnostic problems have been developed, united by 

the general concept of analytical redundancy. According to this concept, diagnostics is carried out based on checking 

the analytical dependencies that exist between the control and output signals of the diagnosed system (DS) measured at 

a certain time interval. The diagnostic process includes the formation of a residual as a result of the mismatch between 

the behavior of the DS and its reference model, available to the developer, and making a decision based on the results 

of the residual analysis.  

II. SIGNIFICANCE OF THE SYSTEM 

Most of the methods are oriented towards the use of linear [1-2] or bilinear [3] models of diagnosed systems. Well-

known nonlinear methods are characterized either by restrictions on the existence of a solution [6-8], or do not allow to 

fully realize the potential of active methods of achieving robustness [7-9]. 

III. LITERATURE SURVEY 

In [10], a method for synthesizing a residual generator in the form of nonlinear parity relations is proposed, which 

allows combining the advantages obtained from using a nonlinear DS model with the effect of using well-known 

optimization approaches to ensure robustness. The main disadvantage of the method is that its implementation can be 

associated with significant computational costs. In order to eliminate it, in the same work, a modification of the method 

is considered, which leads to obtaining a residual generator in the form of a bank of less accurate quasilinear parity 

relations. 

IV. METHODOLOGY 

Consider a nonlinear parametric DS model 

          tpttutxftx ,,,1 *  ,         tpttxhty ,,*      (1) 
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where    *nRXtx the state vector,    mRUtu the vector control    lRYty output vector, 

   gRtp the vector of the model parameters,  t vector that reflecting the effect of destabilizing factors, 

** handf respectively, the nonlinear vector function dynamics and output arguments for differentiable, t = 0,1, 2, 

... - discrete time. The defect-free operation of the system corresponds to the nominal value p
0  

of the
 
vector of model 

parameters. 

 

We represent the vector  t  as consisting of two subvectors           T
tcoltt t,:tи

T
  . The vector 

  vRt   takes into account the disturbing influences on the dynamics from the system and the limited 

accuracy of measuring the control and output vectors. The vector is used to set indefinite , unknown in advance, 

constant or slowly changing in time , coefficients of the model. It is assumed that its dynamics is described by the 

equation 

     ,1t tt          (2) 

where is the    vRVt unknown vector. 

Model (1), supplemented by the equation (2), normally called s in ayut system parametric model with extended state 

vector       TT
ttxcoltq , , or enhanced parametric model (PRM), which if     0,0  tptp   and 

  0t called nominal RPM. We write the equation of this model in the form 

           tqhtytutqftq  ,,1 ;    (3) 

the dimension of the vector q is denoted by n,   nRQtqvnn  ,*
. 

From [12] it follows that for the nominal model (3) there exists a vector of nonlinear parity relations of order k0, 

containing exactly  



l

j

jksns
1

1, , functionally independent components and satisfying the strict equality 

 

    

    
0

,

.....................

,

,

1

0 



















 tytu

tytu

ktP

ns



;      (4) 

functions      nsjtytuj  ,...,2,1,, are also defined in [10 ]. 

Let’s introduce a vector of adaptive ratios of dimension parity ns : 

         tutqHtyktP ,, 0*

0*  ,      (5) 

where is the  matrix of the corresponding dimension, the  tq0
so called representative value of the extended 

state vector, calculated at each moment of time t and which is an estimate of the value of this vector at the moment of 

1t  time. The values  tq0
 will also be used to determine the scope   Qt   of the current value of the extended 

state vector  tq . Expression (5) differs from the traditional linear parity relations obtained in [1-2] both in the method 

of calculating the matrix   and in the nonlinear dependence on the control vector. The specific form of this 

relationship is set in each cycle t  based on the values of the state vectors  1tx  and undefined coefficients  1t , 

the estimated n as a representative basis  tq0
values.  

 

In the vicinity of the current value of the state vector  tq  

                tutqHtutqHtutqHty ,,, 0**0*   
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can be expanded into a Taylor series. By neglecting the higher-order expansion terms, one can obtain an approximate 

equality following from the definition of the matrix  ktC j , : 

             tqtqktCtutqHty 0

0

0* ,,  ,     (6) 

where the matrix 

 

 

 

















ll ktC

ktC

ktC

,

...........

,

,

11

0  

is a function of vectors  tq  and  tu , so we can write 

        tqtqktCktP 0

00* ,,   

By analogy with relation (4), for quasilinear adaptive parity relations, the equality 

  0, 0* ktP       (7) 

for all possible    ttq  . In general, it is impossible to guarantee the existence of a matrix  that ensures 

fulfillment of this condition, but it can be so that condition (7) is satisfied in the best way in a certain sense for a large 

number of values of the extended state vector at time moment t. 

Let    sNNjtq j ,,...,2,1, the set of representative values of the vectors  tq  in  t . We put 

   
   

        00*

0

00 ,,,,, ktDktPtqtqktCktD jjj

tqtq

j
j 


. 

We introduce the criterion 

  2

2

1

0*1 ,



N

j

j ktPJ , 

where the symbol 2 denotes the Euclidean norm of the vector. The problem of finding the matrix is   formulated 

as the problem of minimizing the 1J  criterion. The known solution of the latter is reduced [2] to the singular value 

decomposition of the matrix 

        00

2

0

1

0 ,:...:,:,, ktDktDktDktD nj  , 

which can be done using the MATLAB package and has the form 

  TWGVktD 0, ,      (8) 

where W and V are orthogonal matrices, and 

  21 : nsnss WWW  , 

   s

ss

sNsG  ,...,,diag,0: 21 











  

and the singular values of the matrix  0,ktD  are ordered so that s  ...21 . Then the choice 
1WT   

provides the best approximation to the exact parity relations (7). The criterion value obtained in this case has the form 







ns

i

iJ
1

2

1   

We assume that the approximate equality (6) holds in the surroundings  t  is representative of the values  tq0
. 

Let’s replace the vector on the right-hand side of this  tq  equality by its representative value  10 tq , since, by 

definition, the latter is an estimate of this vector. Based on the least squares method [14], we obtain  

           tutqHtyCtqtq ,1 0*00  
,    (9) 
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where pseudo-inverse to  0,kcС  the Moore - Penrose matrix 

      TT
ktCktCktCC 0

1

00 ,,,


   

calculated with the measured  tu  and substituted instead of  tq  the vector  tq0
 as the initial value  tq0

 in real 

time.  

Representative values   Njtq j ,...,2,1,   are selected in the field  t  on the basis 
min

i  and 
max

i , i = 1, 2,..., n. 

Within the meaning of 
min

i  and 
max

i , respectively, the minimum and maximum difference between the values of the 

i- th component of the RPM in adjacent measures are set [10,12]. Next, a vector interval

        tttcolt n ,...,, 21  with components 

      max0min0 , iiiii tqtqt  ,    ni ,..,2,1  

and vectors are formed 
min  and 

max : 

 minmin

2

min

1

min ,...,, ncol  , 

 maxmax

2

max

1

max ,...,, ncol  . 

From the obtained vector interval [
min , 

max ], N different vectors   NjjN ,...,2,1,,;,.., maxmin11 
are selected : 

  Nj
N

jj ,...,2,1,,
1

1 minmaxmin 



 .   (10) 

After that, the representative vectors are found 

    ,0 jj tqtq  Nj ,...,2,1 .    (11) 

The construction of vectors 
N ...,,, 21

is usually carried out in advance before carrying out the diagnostic process 

using relations (10). In contrast, the calculation of representative values  tq0
 and   Njtq j ,..,2,1,  , the state 

vector RPM (3) is carried out directly in each cycle t on the basis of the relations (9) and (11) respectively, because of 

their dependence on the current values and control output vectors. 

 

Expression (9) contains a pseudo inverse matrix
C to form a representative value  10 tq . The quality of the control 

processes  10 tq  of the synthesized control system depends on the accuracy of the determination. In view of this 

circumstance, it becomes necessary to use efficient algorithms for pseudo-inversion of overdetermined matrices. 

It is known [15-17] that the problem of calculating a pseudo inverse matrix is generally unstable with respect to errors 

in specifying the original matrix. In this case, the errors of the initial data naturally depend on the accuracy of the 

experimental studies, and the characteristics of the calculated process depend on the degree of adequacy of the model to 

the real process. The influence of rounding errors made during the implementation of the computational procedure on 

the accuracy of the desired solution can be analyzed based on known methods of analysis and balance of accuracy. 

In the case under consideration, it is advisable to use the Hermite method [18, 19], which is economical and has a 

sufficiently high accuracy. According to this method, the pseudo inverse matrix is determined based on the expression 
T

R

T ССMСС   , 

Where 
2)( TССM  , 

a 

RM - reflective g -back (generalized inverse) of the matrix M. 

One of the possible direct methods for constructing g - inverse matrices [18] uses the reduction of the )( nm -matrix 

N by two-sided multiplication by non-degenerate matrices to the form:  
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









00

0rI
PNQR  

Here Nrank , and zero blocks have sizes )( rnr  , rrm  )(  and )()( rnrm  . 

If the matrices Р and Q in equality ( 12 ) are known, then any )( mn -matrix of R̂ block structure 











WV

UI
R

rˆ  

generates g - the inverse for the matrix N by the formula 

PRQG ˆ       (13) 

Thus, the considered method provides for a two-fold reduction to the normal lowercase form. In the Hermite algorithm, 

the matrix M is reduced to the form (13) as follows [16 -20]: first, M is reduced to the normal row form M1 , which can 

be described by the relation: 

1MEM  ,      (14) 

where E is a non-degenerate matrix; then the adjoint matrix is 
TM1 also reduced to the normal row form R by the non-

degenerate matrix F : 

RFM T 1       (15)  

In this case, the matrices M and R are Hermitian, and R is a diagonal matrix with r ones and others - zeroes on the main 

diagonal. 

Using this circumstance, we can obtain from ( 14 ) and ( 15 ) the equality 
TEMFR  . 

According to ( 14 ), this implies that 

REFM T
R 

 

V. CONCLUSION AND FUTURE WORK 

The presented stable algorithms for diagnosing nonlinear dynamical systems in the presence of destabilizing factors 

make it possible to carry out programmed motion according to the desired law of change in time of the state vector and 

ensure the convergence of the system motion in a certain neighborhood with respect to the reference motion. 
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