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ABSTRACT: The article covers the development of method of solving the task of effect of non-stationary waves on 

N-layered cylindrical bodies (shell) located in limitless linear-elastic medium, as well as its algorithms. Loop systems 

of differential equations, as well as corresponding initial and boundary conditions are constructed. The obtained 

analytical results have theoretical and applied significance. Developed methodology is universal, and is fair in any 

rheological properties of the media. 
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1. INTRODUCTION. 

In case of the sufficiently extended cavity and action directed perpendicular to longitudinal axis, the surrounding 

cavity of medium and lining are in conditions of the flat deformation, and tasks of determining stress state of massif 

and lining are reduced to the flat task of dynamic theory of elasticity [1, 2, 3, and 4]. In works [5, 6, and 7] tasks of 

stressed-deformable state of cylindrical bodies (shell), which are in limitless linear-elastic medium at propagation of 

longitudinal and transverse waves, are solved. Unlike other works, this work develops the methodology for solving and 

algorithm for task of interaction of non-stationary waves in layered cylindrical bodies. It is fair for any rheological 

properties of the media. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Design diagram of layered cylindrical bodies in elastic medium 

2. Formulation of the task. 
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 Non-stationary stress waves
)(i

xx and
)(i

xy are incident on the N-layer cylinder, the front of which is 

parallel to the longitudinal axis of the cylinder [1] (Fig. 1). It is required to determine the dynamic stress-strain state of 

the cylinder and its environment, caused by the falling stress pulse. Suppose that the time t is counted from the moment 

when the incident pulse touches the surface of the outer (N-1)
th

 cylinder at the point 0,  Nrr . Peace is 

maintained until this moment. In accordance with the above, the task of finding the field of diffracted waves and the 

stress-strain state caused by the incident pulse [1] 
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where 0  is the amplitude of the incident waves; )(tH is Heaviside unit function. First, we will find a solution for 

the plane step of a particular wave. General form of stress tensor is  
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ijnijn    

where  
)( p

ijn is voltage at incident waves, 
)(s

ijn is voltage of reflected waves. 

In the polar coordinate system associated with the cylinder, the stresses and displacements in the incident wave 

nrr  have the form: 
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where Ho (z) is the Heaviside unit function; 0  is voltage at the front of the wave propagating in the х1 direction; rj is 

the radius of layered bodies (j=1,… .n); Срj is the speed of the expansion wave, j is Poisson coefficients, j is the 

density of media. In the absence of static body forces, the displacement vector  Tzjjrjj uuuu ,, 


 in elastic medium 

is determined by the equation 

   ./2 22 tuurotrotudirgrad jjjjjj j
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The displacement vector ( ju ) is expressed through scalar ( j ) and vector ( j


) potentials [2] 
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аnd equation (2) has the form  
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are differential operators in cylindrical coordinates.  

 At infinity r → ∞, the potentials of longitudinal and transverse waves at nj   satisfy the Sommerfeld 

radiation condition [1]: 
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At the contact of two bodies r = rjthe equality of displacements and stresses is fulfilled (the condition of rigid 

contact) 
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;)1(  jrrj uu )1(  jrrrrj  ;)1(  jj uu  )1(  jrjr   , (5) 

and on the free surface (r = r1): 

,01 rr .01  r                                                          (6) 

The task is solved under the following initial conditions: 
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               (7)           

The stress field caused by forces (1) satisfies the wave equation (3), i.e. every cylindrical layer satisfies this. To 

solve the task formulated above, we use the t-integral Fourier transform in time.  
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where  is integral Fourier transform parameter; 
F

j

F

j  is the image of the Fourier transform of the functions 

)(tj  and )(tj , respectively. Using zero initial conditions (7), we obtain the depicted task (3). Then the solution of 

the equations of the problem depicted will have the form 
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mnmjmjmNmjm CCBAAA ,,,,,1  coefficients are determined from the boundary conditions (4) - (6). The 

boundary conditions taking into account the incident waves (1) take the form:                                          
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     where     

(10) 
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Substituting (9) and (10) into the boundary conditions (4), (5), and (6), we obtain a system of complex algebraic 

equations with (4n + 3) unknowns in the form 

    ,PgZ                      (13) 
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where Z is a block matrix;  jZ   is a matrix of 4x4 order, the elements of which are the matters of Bessel and Hankel 

functions of the m
th

 order of the first and second kind; {g} -vector-columns of unknown coefficients; {P}-{0,0.....0,Р1n, 

Р2n, Ргn , Р4n}
T
are the column vectors characterizing the falling loads. Let the stepped waves interact with a cylindrical 

hole at r = r1 and a stress-free hole ( ,01 rr ).01  r  The only stress that does not reduce to zero at r = r1 is 

the hoop stress 0/n . Applying the Fourier transform to the equation of motion and boundary conditions [9], we 

obtain an expression for hoop stresses at 
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 The  5,4,3,2,1 kk  expression is given in [10]. Improper integral (14) is solved numerically using the 

developed algorithms [10]. Practical calculation of (4) on a computer can be carried out as follows. Since numerical 

integration in infinite limits is unthinkable, then the integral (14) is replaced by 
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 The values of the limits of integration of ba  , are selected depending on the type of the incident pulse. The 

numerical values of the spectral density )()( Fi

rr from (12) of the final incident pulse differ significantly from zero 

only in a small frequency  range.The limits of ba  , integration should be selected in accordance with this range 

and taking into account the required accuracy. In this case, the question remains about what error will be introduced by 

neglecting the contribution of integrals of the type (14) within the limits of integration from  to a and from b to . 

Numerical summation of the infinite sum (12), of course, is also impossible. However, in [10] it was shown that for 

sufficiently large n (n is an order of the Bessel and Hankel functions) an asymptotic representation of the general term 

of this sumcan be constructed. As a result, it becomes possible either to estimate the error in the transition from an 

infinite sum to a finite sum, or to approximate summation of an infinite sum. In view of what was said above, let us 

keep the infinite sum in (12). The calculation by the considered method is reduced to the construction of two 
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calculation algorithms: coefficients )2,1,)((  ekZke (13) and integral (15). The first and second algorithms do 

not depend on the type of the mathematical model of the object. When calculating integral (15) by the Romberg method, 

it is necessary to calculate the integrand many times. The inverse Fourier transform for a certain image, the original of 

which is known in advance, showed that with an integration step length of 0.01, the procedure error does not exceed 

0.3-0.5%. As an example, consider the diffraction of non-stationary waves by a cylindrical body. Let the internal 

boundary ( 1rr  ) be stress-free, and the condition of equality of stirring and stress (5) [1,2,4,10] is fulfilled at the 

contact with the surrounding medium. After the Fourier transform, we obtain the cylindrical Bessel equations, the 

solution of which is expressed (9) and (10). In our task, there will be six arbitrary constants, which are determined from 

the boundary conditions (6) and (11). The calculation results are given at 
090  

( 1,0/;5,0/;25,0;2,0 121021  rrvv ). 

 When integrating the limit, the following value 
24 10,4,10   hba  is assumed. The 

change in the circumferential stress ),90( 1

0 rr    depending on  is shown in Fig. 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2. Dependence of the hoop stress of a cylindrical layer on time
 

 The difference between the stresses on the outer and inner surfaces reaches , and the 

difference between the stresses on the middle and inner surfaces reaches ).5,0/%(10 10  rr  

III. CONCLUSION 

 

- comparison of results for displacement waves with results for longitudinal waves shows that more stress 

occurs in longitudinal waves than displacement waves, 

- calculations show that at
1

/12 PC  the results of this research are close to the exact static value 

13,8

 . It can be seen that the maximum stress and displacement significantly depend on and E . 
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