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ABSTRACT: The article deals with the formation of new algorithms for the synthesis of adaptive matrix regulators 

with an implicit reference model based on the polynomial approach. Algorithms for controlling the object under 

consideration using the procedure of pseudo-rotation of matrices are presented. For pseudo-rotation of matrices, 

recurrent algorithms based on the fringing method are used. These relations allow us to perform recurrent pseudo-

rotation of matrices in the control algorithm and thereby implement control actions in an adaptive control system for a 

matrix object under conditions of uncertainty. 
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I. INTRODUCTION 

 

One of the main methods of synthesis of linear control system controllers is a method that provides a given location of 

the poles of the transfer function of a closed system [1-4]. Regulators with a reference model considered in [5-7] have 

much in common with the method of synthesizing regulators with a given pole arrangement, which allow ensuring 

equality or proximity of the output signals of the system. In both cases, the controller parameters are calculated based 

on operations with transfer functions and reduced to solving polynomial Diophantine equations. 

 
II. RELATED WORK 

 
Let's consider the methods of constructing regulators with a reference model in terms of synthesis based on the 

polynomial calculus of matrix regulators that combine the properties of regulators with a given pole position and a 

reference model. The solution of this problem is based on the method of synthesis of regulators considered in [8,9]. 

 

III. FORMULATION OF THE PROBLEM 

Let the control object be described by the following autoregressive moving average model: 

 

),()()()( 11 tuzBztyzA k        (1) 

where )(ty - output signal of the object, ,)( Rty  )(tu
- object input signal, kRtu ,)(  – discrete delay, 

1;  zNk – backward shift operator )()();1()( 11  zBиzAtyty  − 
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where nI - the identity matrix of dimension .,0,;,1,];[ niRBnRAnn mn
ii  

 

It is assumed that the polynomial matrices 
)( 1zA

 , 
)( 1zB

 are mutually Prime on the left. To the polynomial 

matrices 
)( 1zA

 and 
)( 1zB

, we compare the mutually simple right-hand polynomial matrices )(* 1zA  and 

)(* 1zB  [4]: 
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Let the object (1) be controlled by a linear controller, which is described by the equation: 

)()()()()()( 111 tyzStgzQtuzR  
    (3) 

where )(tg  – master control, )(),(),(,)( 111  zSzQzRRtg  polynomial matrices from 
1z  type : 

;,1, R
mm

i niRR   ;,0,1 riRQ m
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The matrix transfer function of the system (1), (3) can be represented as: 

)())()()()()( 111*111*1   zQzBzSzzRzBzzW kk

,   (4) 

)()()())(*)()((*)( 11111 tyzStgzAzRzRzzW k  
. 

The parameters of the polynomial matrices )()( 11  zSzR  are determined from the condition for assigning the desired 

poles of the system (1), (3): 

),()()()()( 11*11*1   zDzBzSzzAzR k
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11 ,1,,)( - a stable matrix polynomial from 
1z  that determines the 

desired distribution of poles on the complex plane. 

Since the polynomial matrices )( 1* zA  and )( 1* zB  are mutually Prime on the right, the solution of the matrix 

polynomial Diophantine equation (5) always exists [4]. Denote 

Since the polynomial matrices 1 and 2 are mutually Prime on the right, the solution of the matrix polynomial 

Diophantine equation (5) always exists [4]. Denote: 
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Matrix transfer function of the system (1), (3), (5) can be expressed as: 

.
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We assume that the desired dynamic characteristics of the system under consideration are determined by its implicit 

reference model, which is described by the equation: 

),()()( 1 tgzWty mm
  

http://www.ijarset.com/


   
  

 
ISSN: 2350-0328 

International Journal of Advanced Research in Science, 

Engineering and Technology 

Vol. 7, Issue 10 , October 2020 

 

Copyright to IJARSET                                           www.ijarset.com                                                          15251 

 

 

where y(t) – output signal of the reference model, )(;)( 1 zWmRty n
m  − matrix transfer function of the reference 

model of the form: 

)(
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The use of an implicit reference model provides a flexible tool for forming a reference transition process that can be 

selected as optimal in the sense of minimizing the optimality criterion set during design. 

Denote 

),1,,max( fHdC nnnlrns   

and without limiting generality in order to simplify the further presentation, we will consider the powers of polynomials 

)(),(),( 111  zHzdzC  and )( 1zf  to be equal ,,1,,1 sssrs  , respectively, by defining polynomials of 

lesser degree by terms with zero coefficients. The following task is set: to determine the polynomial matrix )( 1zQ  of 

the controller that best approximates the matrix transfer functions of the system (6) and its reference model (7). 

. 

 

IV. SOLUTION OF THE TASK 

 

We introduce the following notation: 
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As a criterion for the proximity of the matrix transfer functions of the system (6) and its implicit reference model (7), 

we use the following functional, which is the square of the Frobenius norm of the matrix )( 1zE : 
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Otherwise, this functionality can be represented as follows: 
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We define the matrix parameters [10] by denoting 

d
T
d VVR 0 , f

T
d VVQ 0

, f
T
f VVS 0

. 

Then the matrix X is Toeplitz and ),(1 vuTX 
 Now functional (9) can be expressed as:  

).),(),(2),(( HffTHHfdTQQLddTLQtrJ TTTTT     (10) 

Hence, the matrix Q  minimizing the functional (8) is defined by the expression: 

,)( HMKLQ         (11) 

where " + " is the pseudo-message sign [11-17]. 

If nm  , it is possible to determine the parameters of the polynomial matrix )( 1zQ  that minimize the functional (8), 

provided that the output signals of the system and its implicit reference model coincide asymptotically in response to a 

constant setting influence: 
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Then the relation (12) can be represented as: 
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Matrix Q  under condition (12) can be expressed: 
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Substituting this expression in relation (10) and minimizing the functional by the parameters of matrix 1Q , we 

determine the optimal matrix 1Q  

).()(1 FCKHMKLUQ  
       (14) 

 Substituting this expression in equation (10) and minimizing the functional parameters of the sensor 1 and 1 determine 

the best matrix If the parameters of the object (1) are constant (or slowly changing), but is unknown in magnitude, the 

known value of the discrete lag k  degree n  of polynomial matrices )( 1* zA  and )( 1* zB  then you can use the 

following algorithm indirect adaptive control [1,4]: 

1. Identification of parameters of polynomial matrices )( 1* zA  and )( 1* zB  based on equation (1) based on one of 

the discrete identification methods.  

2. Calculating parameters of polynomial matrices )( 1* zA  and )( 1* zB  based on the relation (2). 

3. Calculating parameters of polynomial matrices )( 1* zR  and )( 1* zS  based on the relation (5) 

4. Calculation of parameters of the polynomial matrix )( 1zQ  by formula (11) (formulas (14), (13)) 

5. Calculation of the control effect using the formula 

).()()()()()(()( 111 tyzStgzQtuzRItu m
   

Next, install 1 tt  and return to step 1. 

It should be noted that the matrices HMK,  do not depend on the parameters of the object (1) and can be determined 

in advance at the design stage of the control system 

To form optimal matrices (11) and (14), it is advisable to use recurrent formulas for pseudo-rotation of matrices 

KL  and KLU  . Based on the theory and methods of pseudo-circulation of matrices [11-16], we present a 

pseudo-circulation algorithm for matrix   , which can also be used for calculating the pseudo-inverse matrix 
 . 

Известно [11,14], что для каждой действительной 1-матрицы 2 существует единственная действительная 

псевдообратная матрица 3, удовлетворяющая следующим свойствам It is known [11,14] that for every real 

mssn  )1( -matrix m , there exists a unique real pseudo-inverse matrix  U that satisfies the following properties: 

 UUUUUUUU TT )(,,)(, .   (15) 

In practice, it is not uncommon for additional information in the form of  ( 1ms ) - matrix 1m  to be added to the 

existing  ( mssn  )1( )- matrix m  as its last row, so that the newly formed matrix 1m  can be represented in 

the form: 
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It is known [15,16] that the pseudo-inverse matrix 1mU
 for matrix 1m  in the form (16) can be represented as: 

11   m
T
mm vVU  ,     (17) 

where m
T
mmm

T
m UvUV 11   . 

From the first relation (15), using the partition 1mU
 in the form (17), we can write 

1111111 ][   mmmm
T
mmmmm UvVUUU  .   (18) 

From here T
mmm

T
m vVI 11   . 

Based on (18), we find mm
T
mmm

T
mmm UvVU   11 , from which we can come to the expression 

m
T
mmm

T
m UvUV 11   ,     (19) 

Substituting (19) in (17), we find 

1111   mm
T
mmmm vUvUU  ,    (20) 

for 1m  we have 1
1

111 )(   TU . 

When using the algorithm (20), there can be two cases. It is possible that the row: 
T
m 1  does not increase the rank of 

the matrix m  . Then 1mv
 can be defined from the expression [13,16]: 

T
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T
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T
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T
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T
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1
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
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Entering the designation 

1)(  m
T
m

T
mmm UUS      (22) 

and substituting (22) in (21) and transposing, we find 

1
1111 )1( 
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T
mmmm SSv  . 

In this case, matrix mS
 is defined by the expression  

m
T
mmmm SvSS 111    , 

If row 

T
m 1

 increases the rank of matrix m  , column 1mv
 can be determined based on the expression [14,15-18]:  

1
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By entering the designation 

T
m

T
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 find 

1
1111 )( 
  mm

T
mmmm TTv 

. 

In this case, matrix mT
 can be defined as follows  

m
T
mmmm TvTT 111   

. 

by 1m  have 111  UIT
. 

In expressions (16)-(22) 1mU – pseudo-return matrix for the matrix composed of the first 1m  lines of source; 

T
m 1  is  ( 1m ) row of the original matrix; 1mv  is the ( 1m )-th column of the matrix pseudo-return; 1mT , 
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1mS  – symmetric matrix when a vector-column with 1mv  vector-row 
T
m 1 ; I – identity matrix; T – the sign of 

transposition;  – the sign of separation m  columns of the matrix 1mU  of the ( 1m )-th column 

 
V. CONCLUSION 

 

The considered pseudo-circulation algorithm is direct and uses the advantages inherent in the fringing method 

[13,17,18]. When using this algorithm, it is possible to control the correctness of calculations after each step , taking 

into account the symmetry of matrices mT  and mS , as well as other relations, and determine the rank of the 

original matrix by the number of non-zero values of vector mv . 

The given relations allow us to perform recurrent pseudo-circulation of matrices and in expressions (11) and (14), 

and thereby implement control actions in an adaptive control system for a matrix object under conditions of 

uncertainty. 

In this way, adaptive matrix controllers with a given pole position and an implicit reference model are synthesized. 

An implicit reference model is defined as a reference matrix transfer function that determines the desired behavior 

of the signal at the output of the control system. The synthesis of regulators is carried out using well-known 

methods of polynomial calculus, which require a relatively small amount of calculations, and includes polynomial 

factorization, the solution of a matrix polynomial equation, and a system of linear algebraic equations 

 
REFERENCES 

 
[1] Isermann R. Digital control system. M.: Mir, 1984. 
[2] Prager D. L., Wellstead P. E. Multivariate pole-addignment self-tuning regulators // IEEE Proceedings. 1980. V. 128. Part D. No. 1. P. 9-18. 

[3] Mikles J. A multivariable self-tuning controller based on pole-placement desing // Automatica. 1990. V. 26. No. 2. P. 293-302. 

[4] Kraus F. J., Kučera V. Linear quadratic and pole placement iterative design / European Control Conference (ECC), Karlsruhe, 1999, pp. 653-
658, doi: 10.23919/ECC.1999.7099379. 

[5] Astrom K.J. Robustness of design method based on assignment of poles and zeros // IEEE Trans. Automat. Contr. 19480. V. AC-25. P. 582-

584. 
[6] Tsypkin Ya. z. non-Minimal-phase in discrete adaptive control systems // Results of science and technology. Ser. Technical Cybernetics. M.: 

VINITI, 1989. T. 26. - P. 3-40. 

[7] Tsypkin Ya. z. Optimal discrete control systems for non-minimal phase objects / / AIT. 1991. No. 11. - P. 96-118. 
[8] Yadykin I. B. Optimal tuning of linear regulators// Docl. ANR 1985, Vol. 285, No. 3, Pp. 574-576. 

[9] Yadykin I. B. Principles of construction, architecture and software of automated systems for setting up industrial regulators // Computer 

engineering and control systems. Moscow; Sofia, 1989. Issue 1. - Pp. 23-36. 

[10] Porat V., Friedlander V. The output error method for reduced order controller design / / IEEE Trans. Automat. Contr. 1984. V. AC-7. P. 

629-631. 

[11] Voevodin B. B., Kuznetsov Yul. Matrixes and calculations. M.: Nauka, 1984. 
[12] Gantmacher F. R. Theory of matrices. - M.: Nauka, 1988. - 552 p. 

[13] Golub J., Van Loach CH. Matrix calculations: Per. s Engl. - M.: Mir, 1999. -548 p. 

[14] Horn R., Johnson CH. Matrix analysis: Per. s Engl. - M.: Mir., 1989 – - 655s. 
[15]Demmel J. Computational linear algebra. Theory and applications: TRANS. from English-M.: Mir, 2001 -430 p. 

[16] Zhdanov A. I. Introduction to methods for solving incorrect problems: - Ed. Samara state. aerospace University, 2006. -87 p. 

[17] Mamirov U. F. Algorithms for stable control of a matrix object under parametric uncertainty / / journal " Chemical technology. Control and 
management". - Tashkent, 2018. – № 1-2 (79). –Pp. 164-168. 

[18] Lawson CH., Henson R. Numerical solution of problems of the least squares method / TRANS. from English-M.: Nauka. GL. ed. Phys. - 

math. lit., 1986. -232 p. 
 

 

http://www.ijarset.com/

