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ABSTRACT: The problem of solute transport in a two-dimensional inhomogeneous porous medium is formulated and 

numerically solved. The filtration rate and hydrodynamic dispersion were set by different ratios, nonlinear. On the basis 

of the numerical results, the concentration fields are determined for different values of the model parameters of the 

filtration rate and hydrodynamic dispersion. 
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I. INTRODUCTION. 
 

The problems of solute transport and filtration of heterogeneous fluids are of great practical importance in 

many branches of engineering and technology. Many natural and technological processes are associated with the 

filtration of inhomogeneous fluids and the transfer of particles in heterogeneous porous media. In contrast to 

heterogeneous fluids that are homogeneous during filtration, a number of new phenomena arise, the study of which is 

very important for understanding the mechanisms of the filtration process. Recently, the issues of mathematical 

modeling of the processes of transfer of substances have been intensively developed, mainly abroad. In principle, 

modeling approaches are based on the law of substance balance in a certain control volume using some additional 

phenomenological relationships. The process of solute transport suspended in a fluid in a porous medium is determined 

by many factors, such as convective transfer, diffusion, hydrodynamic dispersion, adsorption, deposition in pores, their 

release with a transition to a mobile state, etc. Convective transfer, diffusion, hydrodynamic dispersion, local change in 

concentration can be described by the mass conservation equation [1, 2]. 

 

II. RELATED WORK 

 

In [3], the problem for a one-dimensional advection-dispersion equation with variable coefficients was solved 

using an explicit finite-difference scheme; further, the results were extended to the case of a two-dimensional equation 

in semi-infinite media [4]. It is known that dispersion generally depends on the flow rate [5]. In [6], it is believed that 

the dispersion is proportional to the n th power of the velocity with an exponent in the range from 1 to 2. Sometimes 

the expressions for the velocity and dispersion are written in degenerate form [6]. In the two-dimensional case, the 

transport of the solute occurs both in the longitudinal and transverse directions. Significant transport of solute is 

observed along the transverse direction even at very low transverse velocity and dispersion relative to their longitudinal 

counterparts. This shows that a two-dimensional model is more suitable than a one-dimensional one. 

In [7], a mathematical model for a two-dimensional transfer of matter in a semi-infinite inhomogeneous 

porous medium is presented. The dispersion coefficient is considered as a linear multiple of the space-dependent 

function and filtering rate. The exponentially decreasing relation of the filtration rate is considered. 

This paper considers the solute transport in a two-dimensional porous medium, where the dispersion 

coefficients and filtration rates are variable in space and time scale. 
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III. PROBLEM STATEMENT 

 

Consider a two-dimensional object, the diagram of which is shown in Fig. 1. Let a solution with a certain 

concentration be supplied at some point in the  0 ; 0x y      medium. From such a point source, the solution 

spreads into the medium in mutually perpendicular directions x and y . 

The components of the flow velocity along x and y directions at a given point ofthe field  ,x y will be denoted by 

 ,u x t and  ,v y t , respectively. Both of these components satisfy Darcy's law. Across 

Fig. 1. Scheme of a two-dimensional medium, x  and y
 are chosen so that it was, 0

c

x





, 0

c

y





, respectively [4]. 

We will denote  ,xD x t and  ,yD y t  as longitudinal and transverse components of the hydrodynamic dispersion 

in the directions x and y  [4,5], respectively. Then the linear equation of convective dispersion in the two-dimensional 

case can be written in the following form: 
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  
   

   

 
  
  

     (1) 

where ( , , )C x y t is the concentration of the solute transported through the medium at a point  ,x y  in time t . 

In order to solve the two-dimensional advection-dispersion equation (1), it is necessary to set the initial and 

boundary conditions. 

Initially, let the medium be filled with a clean (no substance) fluid. Starting from the initial moment, from the 

point (0,0) , solute with a certain concentration is supplied for a certain time 0t . At infinity in the directions x and y  

the conditions of the absence of solute consumption are accepted. Then the initial and boundary conditions can be 

written in the form 

 , , 0, 0; 0, 0C x y t x y t    ,       (2) 

  0 0

0

, 0; 0; 0
, ,

0, 0; 0;

C x y t t
C x y t

x y t t
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      (3) 
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 
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where
0С  is the concentration of the substance supplied to the medium. 

Since the medium is inhomogeneous, two velocity components, i.e.  ,u x t and  ,v y t , is considered to be 

linear functions of the corresponding coordinates x  and y . Moreover, the velocities are considered to depend on t , i.e. 

some functional dependence of the velocity component on t  is taken into account. Thus, the components of the fluid 

velocity are taken in the form [4] 

         0 1 0 1, 1 , , 1 ,u x t u f mt ax v y t v f mt by   
     

(5) 

where a  and b  are the parameters of heterogeneity in the longitudinal and transverse directions,  1f mt is a known 

function, m  is a parameter, 
0 constu  ,

0 constv  . Different values a  and b  express different characteristics of 

heterogeneity. 

It is known that the diffusion (hydrodynamic dispersion) coefficients depend on the fluid velocity. Here the 

following dependence is accepted [4] 

         
2 2

0 2 0 2, 1 , , 1x x y yD x t D f mt ax D y t D f mt by    .    (6) 

where  2f mt  is a given function, 0 constxD  , 0 constyD  . It is guaranteed that   1f mt   for 0m  or 0t  . 

In (5), (6) the coefficients 
0u , 

0v , 0xD , 0yD  can be interpreted as homogeneous coefficients of the speed of movement 

and diffusion coefficients, respectively, in the longitudinal and transverse directions. 

 

IV. NUMERICAL SOLUTION OF THE PROBLEM 
 

System (1) is written as following form 

     
 

 

 
   

 

   
 

   
   

 

2

2

2

2

, , , , , , ,
,

, , ,
, , ,

, , , , , , , ,
, , , , .

x

x

y

y

C x y t D x t C c y t C x y t
D x t

t x x x

u x t C x y t
C x y t u x t

x x

D y t C x y t C x y t v x t C x y t
D y t C x y t v x t

y y y yy

    
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  
   

  

      
             

 (7) 

Using expressions for the velocities of motion (5) and diffusion coefficients (6), equation (7) can be written in 

the form 
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

   (8) 

where 
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2
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  1

mtf mt e ,  2

mtf mt e . 

The following designations are introduced 
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       

     

2 2

1 0 2 0 3 0 0

4 0 0 5 0 0

1 , 1 , 2 1 1 ,

2 1 1 , .

mt mt mt mt

x y x

mt mt mt

y

L D e ax L D e by L D a ax e u ax e

L D b by e v by e L au bv e



 

       

      
 (9) 

Using notation (9), we write equation (8) in the form 

         
 

2 2

1 2 3 4 52 2

, , , , , , , , , ,
, , .

C x y t C x y t C x y t C x y t C x y t
L L L L L C x y t

t x yx y

    
    

   
 (10) 

To solve equation (10), we use the finite difference method. For this, we introduce the following grid [8] 

 

 
1 2 1

2 1 2
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
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

 

where
1 2, ,h h are the grid steps in time, coordinates x  and y , respectively. 

To approximate (10), the Crank-Nicholson scheme was used [8] 
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    (11) 

where
k

i jC  is the grid function corresponding to the nodal point  , ,i j kx y t . 

It can be seen from (11) that the approximation error for scheme (11) is of the order  2 2

1 2, ,O h h . 

The system of equations (11) is written in the form 
1 1 1

2 2 2
1 1, 1 , 1 1, 1

1 1 1

2 , 1 2 , 2 , 1 2

,

,
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i j i j i j i
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       (12) 

where 
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, 1, 1, 1, ,

1

2 .
4
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L
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  

   
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    (13) 

We use the following relations to solve (12) by the sweep method 
1 1

2 2
, 1 , 1 , 1 1 , 1

1

1 2
, 2, 1, 1, 2, 1,

,

,

k k

i j i j i j i j

k
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i j i j i j i j

C C
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 

 

 

  




  

 

 

        (14) 

where 1 , 1i j  , 1 , 1i j  , 2, 1,i j  , 2, 1,i j   are coefficients of Thomas’ algorithm 
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Then from (12) we obtain the following recursive formulas for the coefficients of Thomas’ algorithm. 
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      (15) 

The initial condition in the difference form is 

 
0

, 0, 0; 0; 0i jC x y t    .        (16) 

From the boundary conditions we have 
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from which we obtain 
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V. RESULTS 

 

Some numerical results are shown in Figure 2-5. The calculations used the following values of the initial 

parameters: 
6

0 2 10xD   м
2
/c; 

6

0 10yD  м
2
/c; 6

0 4 10u   м/c; 6

0 2 10v   м/c; 
410a  м

-1
; 

410b  м
-1

; 0 0.01C  . 
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Fig. 2. Concentration profiles for the exponential form of the functions  1f mt and  2f mt  at 9000t с  (a); 18000с  

(b); 36000с ; (c). 
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Fig. 3. Concentration profiles for exponential form functions  1f mt and  2f mt  at 36000t с 910m   (a); 

710m   (b); 5 110m с  ; (c). 

As can be seen from Figs. 2, 4, with increasing time t , concentration profiles propagate over the region in both 

directions, i.e. x and y . In this case, the profiles propagate more intensively in the direction x , because values 

0u and
0xD  more than values 

0v and 0yD . This situation corresponds to the case when both convective and diffusion 

directional transfers x are significantly ahead of the corresponding directional transfers y . However, other situations 

are also possible when both types of transport along the directions can have different intensities. 

 

VI. CONCLUSION 

 

The problem of material transfer in a two-dimensional porous medium is formulated and numerically solved. It is 

shown that the concentration propagation at a certain position is higher for the smaller parameter m  and lower for the 

larger parameter m . 
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