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ABSTRACT: The traditional Saint-Venant problem of three-dimensional viscoelasticity is discussed under the 

Hamiltonia system with the use of the Laplace integral transformation, and the original problem is transformed into 

finding eigenvalues and eigenvectors of the Hamiltonia operator matrix. Since local effect near the boundary is usually 

neglected, all solutions of Saint-Venant problems can be obtained directly by the combinations of zero eigenvectors. 

Moreover, the adjoint relationships of the symplectic orthogonality of zero eigenvectors in the Laplace domain are 

generalized to the time domain. 
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I. INTRODUCTION 

A great amount of computational techniques can be found in the research of viscoelastic problems [1]. One of the most 

popular methods is the use of the Laplace transform, which is an effective method for viscoelasticity, since the 

equations can be transformed into pseudo-elastic ones. However, this procedure presents some difficulties when 

viscous parameters vary along time, or when complicated time dependent boundary conditions are imposed. A lot of 

inverse transforms can not be solved analytically. Therefore the numerical method of the Laplace inverse 

transformation is rapidly developed and applied. De Chant [2] discussed limitations of the numerical inversion method 

in the face of discontinuities and asymptotic methods. Temel [3] obtained some solutions in the real space resorting the 

Durbin's numerical method of the inverse Laplace transform. It should be pointed that numerical inversions of Laplace 

transform by employing the finite-element and boundary element are effective approximate methods [4]. Because of 

the complexity of the constitutive relations, it is difficult to find analytical solutions of viscoelasticity, and the 

numerical method is taken into account in recent years with the help of the rapidly development of the computer 

technology, especially the finite element method and the boundary element method [5].  

 

The Hamiltonian system is a direct method by which the order of differential governing equations can be reduced. 

Since the difficulty of solving high-order differential equations in the traditional methods, such as the semi-inverse 

method, is overcome, the Hamiltonian system gained much attention in recent years and has been applied successfully 

into elasticity. In this paper, based on the investigation of the character of viscoelastic material, the Hamiltonian system 

is applied into three-dimensional viscoelasticity, and the dual equations of the system are constructed. Thus the 

problem is transformed into finding the corresponding eigenvectors, which can easily explain the Sanit-Venant 

principle: zero eigenvectors are solutions of Sanit-Venant problems, or solutions of the equivalent system, while non-

zero eigenvectors are solutions of local effect. By employing the adjoint relationships of the symplectic orthogonality 

and the expansion of the eigenvectors, effective methods of solving inhomogeneous equations and boundary 

conditions, especially lateral boundary conditions, are given. 

 

II. SOLUTION METHOD 

A homogeneous isotropic viscoelastic cylinder is considered in the Cartesian coordinate ( , , )r z , in which the z-axis 

coincides with the centroid axis of the cross section  , a single connected domain, and the outward normal n of its 

boundary contour   has direction cosines ( , )l m . Let ij  denotes the stress and ij  denotes the strain components, 

then their deviatoric components are as follows  
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  ,ij ij ij ij ij ijS S         (1) 

 where / 3kk   stand for mean stresses. The constitutive relations of three-dimensional viscoelasticity can be 

described uniformly as 
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where G  is Lame constant, K  the bulk modulus,   the viscosity coefficient, m  and kG  parameters. Eqs. (1) describe 

the stress-strain relations of viscoelasticity reducible to the standard linear solid type model when 0 k mG G   ,  the 

Kelvin type model when 0m   and the Maxwell type model when 0kG  . Suppose the lateral boundary is 
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Let the displacements /u u c , /v v c , /w w c ,  where / (2 )c p   and p is the circumference of the cylinder, and 

time /t t  . Therefore Eqs. (1) are rewritten aswhere 
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where the dimensionless deviatoric components of stress /ij ijS S G , parameters /m   , /kG G  , and 

3 / (2 )K G  . Eqs. (3) give the non-dimensional constitutive relations of the standard linear solid type model when

0 1  , the Kelvin type model when 0   and the Maxwell type model when 0  . Write the displacement 

variables in vector form: 

   ={ , , } ,Tu v wq   (5) 

Then dual vector can be written as 
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The Hamiltonian operator matrix  can be expressed as 
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and 
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III.  ADJOINT SYMPLECTIC RELATION 

 

Based on the property of the Hamiltonian operator matrix H, the integral product of the eigenvectors is defined as 

  1 2 1 2, , ,T drd    


  J J   (10) 

Thus zero eigenvectors are classified into two groups, which satisfy the adjoint symplectic ortho-normalization 

relationships: 

  
( ) ( ) ( ) ( ), , , ,i j i j ij

           J J   (11) 

Introduce another integral product 
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where * denotes the conventional convolution product. There also exist adjoint symplectic ortho-normalization 

relationships between the eigenvectors: 
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IV. NUMERICAL EXAMPLE 

Consider a circle cylinder and suppose that its both ends are free.The lateral boundary condition is as 

1 cos ( 1).r r   
 
By introducing new variables, the inhomogeneous lateral boundary conditions can be 

transformed into homogeneous one. However the inhomogeneous term of the dual equations become more complex, 

and the end condition is changed too. Figs 1-3 exhibit the lateral contours in the bending process of Maxwell type 

model ( 0, 1)    at different time: t=0,  t=2 and  t=4, respectively.  

 

 
Fig 1.  Evolution of the lateral contours of circular cylinder at t=0 

 

 

 
Fig 2.  Evolution of the lateral contours of circular cylinder at t=2 
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Fig 3.  Evolution of the lateral contours of circular cylinder at t=4 

 
 

IV. CONCLUSION AND FUTURE WORK 

 

With the aid of Laplace integral transformation and the property of viscoelasticity, the Hamiltonian system is 

introduced in the research of three dimensional viscoelasticity. Based on this method, all Saint-Venant solutions and the 

local effect solutions are obtained from the zero eigenvectors and non-zero eigenvectors. By neglecting the local effect 

near the boundary, all solutions of Saint-Venant problems can be described approximately by the linear combinations 

of zero eigenvectors.  

 

REFERENCES  
 

[1]. O. Ashish, V. J. Ray, S. L. Roderic, “Generalized solution for predicting relaxation from creep in soft tissue: Application to ligament,” 

Interantional Journal of Mechanical Sciences, vol. 48, 2006, pg no. 662-673. 

[2]. L. J. De Chant, “Impulsive displacement of a quasi-linear viscoelastic material through accurate numerical inversion of the laplace 
transform,”  Computers & Mathematics with Applications, vol. 43, 2002, pg no. 1161-1170.  

[3]. B. Temel, “Quasi-static and dynamic response of viscoelastic helical rods,” Journal of Sound and Vibration, vol. 271, 2004, pg no. 921-935. 

[4]. M. Schanz, H. Antes, “Convolution quadrature boundary element method for quasi-static visco- and poroelastic continua,” Computers & 
Structures, vol. 83, 2005, pg no. 673-684. 

[5]. M. Schanz, H. Antes, “A new visco- and elastodynamic time domain boundary element formulation,” Computational Mechanics, vol. 20, 1997, 
pg no. 452-45. 

 

 

 

 

 

 

 

 

 

http://www.ijarset.com/
http://www.baidu.com/link?url=RkzxSgK-cvgyk91_RzSOgAaG5YfQxv8DU_23KnwCd1HNn7WH2gfamC_nnI8amyQIZefBTa_0jBhBJLRiijxsQhjozPiAxIkX48foywx9eY53OhkNIIu73RQs5ieY-NcL6oPJ9Yx525VfnaAsSpPFYLOFrP6lhuybnzBlimb2cUunLrrH3Lxas5fRd6Q_GSarsp3NCfvGVB1BE3fp2tQf5ybdSCjxDiKDElqvRhLgEmItRicDKoMOvlev0or5doyRa4X-wKpmHhg03wXqCF_KMKWLLMDQxfEDmLNHEX38uY_

