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ABSTRACT: Algorithms for determining the placement of poles in multivariate systems using proportional-

differential output feedback. The requirements for the system are formulated by specifying the desired distribution on 

the complex plane of the eigenvalues of the matrix of the closed-loop system. Two possible approaches to determining 

the values of the matrix are considered, using proportional feedback. The proposed approaches to solving the problems 

posed are based on the boundaries of the total number of poles. The main focus was on finding the value of the 

feedback matrix using two search approaches. The above algorithm provided an effective solution to the problem of 

pole placement in process control systems. 
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I. INTRODUCTION 

 

One of the most common synthesis methods based on representing systems in the state space is the modal control 

method. In comparison with the optimal synthesis, the modal synthesis method has such advantages as simplicity, 

formalization, as well as the solution of the problem of smoothness of the transient process and increasing the speed of 

response. 

 

The modal control problem, which consists in assigning the given roots of the characteristic equation of closed linear 

systems using linear feedback, has been sufficiently studied and is widely used in control theory and practice [1-8]. It is 

known [1,5] that in the case when the number of inputs of the control object is more than one, the modal control 

problem has an infinite set of solutions in the sense of multivariance in the choice of feedback matrices. In the problem 

of modal control, the eigenvalues of a closed-loop system are assumed to be given, and the emerging freedom of choice 

of elements of the feedback matrix in systems with many inputs can be used only to vary the matrix of eigenvectors of 

the closed-loop system. 

 

It is known [1,4,5] that it is possible to obtain any spectrum of a linear system with the help of rigid feedback if this 

system is completely controllable. 

 

If for a completely controllable system the number of nontrivial invariant polynomials of the matrix of the system is 

less than the dimension of the control vector, then the problem of constructing a control leading to the required 

spectrum is not uniquely solved. In this case, it is of interest to synthesize a system with a given or satisfying some 

requirements spectrum under conditions of incomplete information required for the synthesis of a system with the 

required spectral properties [1,8-13]. 

 
II. FORMULATION OF THE PROBLEM 

 

Consider a system with one-dimensional input and multidimensional output: 
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where x  – n  is a dimensional state vector, u  is a scalar input, y  – l  is a dimensional vector of output (controlled) 

variables; A, b, C are matrices. 

Determine the number of poles that can be arbitrarily placed in such a system using proportional-differential output 

feedback [1,5]. The system under consideration can be described using the transfer function:  
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Let in the system with the help of l -dimensional vectors p  and q  is formed proportional-differential feedback on the 

output. As a result, the characteristic polynomial of the n  - th order closed-loop system is determined by the expression: 
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Rotation (1) and the Cayley-Hamilton theorem allow us to write  sH  in the form [1,8]: 
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is a non-degenerate    11  nn  - matrix. Expression (2) shows that the coefficient at 
ns  in  sH  is always equal to 

one and does not depend on ns  and  sH . The coefficients at 
01,..., ssn

 depend on p  and q . 

 

The number of coefficients that can be set independently using p  and q  is equal to the number of linearly independent 

columns of the matrix: 
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The number of poles in a closed system, which can be arbitrarily set with p  and q , is given by: 
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where  bAAbbR n
c

1...,,,   is the controllability matrix of the system.  

In the case when the system is fully controllable, nRc rank  and 
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Note that  nlv ,2min1  , where l2  is the total number of parameters that define the feedback vectors. 

 

Similarly, consider the  C)B,(A,  system with m  inputs and one output. The use of n -dimensional vectors p  and q  

proportional-differential feedback on the output allows you to arbitrarily set [1,8,14]: 

 

  ABBRv T ,rank 02  , 

 

poles of a closed system, where 
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is the observability matrix of the system. When the system is fully observable: 

 

n0rankR  и  ABB,rankv2  . 

 

In this case,  nmv ,2min2  , where m2  represents the total number of elements of vectors p  and q . 

We turn to consideration of a controlled, observable linear multidimensional system:  
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where x  – n  -dimensional vector of state, u  – m  -dimensional vector of input, y  – l  -dimensional vector of output 

(controlled) variables. 

 

We assume that the system uses a proportional-differential control law in the form of output feedback 

 

       tyQtPytvtu  , 

 

where v  – m  is a dimensional setting vector, P  and Q  are proportional and differential 1m  are output feedback 

matrices, respectively. The equation of state of a closed-loop system has the form: 

 

           tBvBQCItxBPCABQCItx
11 

 , 

 

where 0 BQCI . 
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Let us consider two possible approaches to the definition of such feedback matrices P  and Q , which provide an 

arbitrary setting of the poles in a closed system, i.e. eigenvalues of the matrix [1,5]: 

 

   BPCABQCIA 
1ˆ . 

 

III. SOLUTION OF THE TASK 

 

We will construct feedback matrices in two stages. In the first approach, 1m  poles are set in the first step using 

proportional feedback. Let us introduce into the system  CBA ,,  proportional lm   - the feedback matrix of unit rank 

111 pkP   to obtain the characteristic polynomial:  

 

      10101H ksWpsHs  , 

 

where    BAsICsW  adj0 ,   AsIsH 0 , l  -dimensional vector 1p  is defined so that  CpA 1,  is observable, 

and m  -dimensional vector 1k   is defined so that 1m  poles of the closed-loop system take different preset values 

11 ...,, m . 

For this, 1m  linear equations are solved: 

 

    01010  kWpH ii  ,    1...,,1  mi . 

 

As a result, the closed system  CBA ,,1 , where CBPAA 11  , has 1m  poles with values of 11,..., m . At the 

second stage, we introduce into the system  CBkA ,,1  proportional and differential 1m  - feedback matrices of unit 

rank 22 kpP   and kqQ  , respectively, where k  is m  -dimensional vector, 2p  and q  are l  -dimensional vectors. 

Thus, the problem is reduced to a system  CBkA ,,1  having a one-dimensional input, a vector of proportional feedback 

2P  and a vector of feedback on the derivative q . The characteristic polynomial of a closed-loop system is determined 

by the expression:  

 

        kssqWksWpsH
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sH 11212
1

1



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where    BAsICsW 11 adj  , a   11 AsIsH  . 

The vector k  is necessary to preserve the values of 1m  poles of system  CBA ,,1  in a closed system regardless of 

2p  and q . For this, the following conditions must be met: 

 

  01 kW i , 1,...,1  mi . 

 

Since the matrices  1adj AIi  , 1,...,1  mi  are rank one, each of the matrices  iW 1  contains only one 

independent row iw . 

Therefore, the vector k  is determined from 1m  linear equations: 

 

0kwi , 1,...,1  mi . 

 

The number of poles that can be set arbitrarily in the  CBkA ,,1  system with one-dimensional input using the feedback 

vectors 2p  and q  is determined by the expression: 
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where  BkABkABkR n
C

1
11 ...,,,   is the controllability matrix for system  CBkA ,,1 . Vectors 2p  and q  providing 

additional poles with values of 1v  are obtained by solving 11
...,, vmm   linear 1  equations: 

 

      01121  kqWkWpH iiii  , 1...,, 1  vmmi . 

 

Thus, the proportional feedback matrix: 

 

  









2

1
1,

p

p
kkP , 

 

whose rank is equal to 2 and the differential feedback matrix kqQ   of unit rank set 111  vm  values of the poles 

of the system  CBA ,, . 

It can be shown that with the considered approach, the boundaries of the total number of poles, specified using 

proportional-differential feedback, are determined by the inequality: 

 

111   , 

 

where 









CA

C
rank , а  1,min1  mnm  . 

Note that 121  ml . 

In the second approach, in the first step, the values of 1l  poles are set using proportional feedback. Let us introduce 

into the system  CBA ,,  a proportional feedback matrix of unit rank 111 pkP   to set the 1l  poles of the values 

11 ...,, l . In this case, 1K  is arbitrary, and 1P  is determined from the solution of 1l  linear equations: 

 

    01010  kWpH ii  ,    1,...,1  li , 

 

where    BAsICsW  adj0 , a   AsIsH 0 . 

At the second stage, we enter  CBA ,,  into the system, where CBPAA 11  , proportional and differential feedback 

matrices of unit rank 22 pkP   and qkQ  , respectively. Vector k  is l -dimensional, and vectors 2p  and q  are m -

dimensional. 

Thus, the problem is reduced to a system  kCBA ,,1  with a one-dimensional output, proportional to the feedback 

vector 2p  and the vector feedback from the derivative q . The characteristic polynomial of a closed system is 

determined by the expression: 

 

        qsskWpskWsH
kCBq

sH 12112
1

1



 , 

 

where    BAsICsW 11 adj  , a   11 AsIsH  . 

Vector k  is necessary to store the values 1l  of the poles of system  CBA ,,1  in a closed system, regardless of 2p  

and q . For this, the following conditions must be met: 
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0ikw ,  1,...,1  li , 

 

where iw   represents the non-zero column  iW 1 . 

The number of poles that can be set arbitrarily in the system  kCBA ,,1  with one-dimensional output using the 

feedback vectors 2p  and q  is determined by the value 

 

  BABRv T
102 ,rank , 

 

where        






 TnTTTT

kCAkCAkCR
1

110 ,...,,  is the observability matrix for system  kCBA ,,1 . 

Vectors 2p  and q , providing the assignment of 333 additional poles of values, are obtained by solving 12
,..., vll   

linear 2v  equations: 

 

      01211  qkWpkWH iiii  , 1...,, 2  vlli . 

 

Thus, the proportional feedback matrix 21 PPP  , which has a rank of two, and the differential feedback matrix Q  of 

rank one, define 122  vl  pole values of the system  CBA ,, . 

It can be shown that 

 

122   , 

 

where  ABB,rank , а  1,min2  lnl  . 

Note that 122  lm . 

IV. CONCLUSION 

 

In conclusion, we note that in the multidimensional system  CBA ,, , the number of poles specified using the 

proportional feedback matrix P  and the differential feedback matrix Q  is determined by the number  21,max   , 

the boundaries of which are determined by the inequality: 

 

    1,max,max 21   . 

 

Note that  12,12max  mllm . 

When determining the required matrices P  and Q , the first approach should be used when 21   , and the second 

approach when 21   . 

The results of the analysis have confirmed their effectiveness, which makes it possible to use them in solving applied 

problems of optimizing the parameters of controlled systems and synthesizing control systems for technological 

processes. 
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