International Journal of Advanced Research in Science, Engineering and Technology

Vol. 8, Issue 11 , November 2021

On the volume of \mathbf{n}-balls

Dũng \mathbf{P}. Hoàng
M.Sc., Lecturer of Faculty of Fundamental Sciences, Posts and Telecommunications Institute of Technology, Hanoi, Vietnam

Abstract

In this paper, we give a survey on some recent results on the volume of n-ball in the Euclidean space \mathbb{R}^{n}.

KEYWORDS: Volume, n-balls, spheres

I. INTRODUCTION

The n -balls or spheres in the Euclidean spaces is a basic object in mathematics. In calculus, geometry, topology,... the n balls appear in many examples. In 2-dim spaces, we have the area πR^{2}, in 3-dim spaces, we have the volume $\frac{4}{3} \pi R^{3}$. But in higher dimension spaces, there is no way to draw the n-balls. Therefore, it is difficult to image them and compute their volume is not trivial problem.

How to compute their volume? And how small the n-ball when n tends to infinity? These are natural questions. It is wellknown how to use the gamma function to compute the are or volume of an n-ball of the radius R. Many authors try to answer the above questions by different methods.

Firstly, we have the following definition of n-balls in the Euclidean \mathbb{R}^{n}.
Definition 1.1 The set

$$
B_{n}(R):=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2} \leq R^{2}\right\},
$$

where R is a positive number, is called a n-ball with radius R in the Euclidean space $\mathbb{R}^{n}, n \geq 1$.

1. Where $n=1, B_{1}(R)$ is the interval $[-R ; R]$.
2. Where $n=2, B_{2}(R)$ is the circle with center $O(0 ; 0)$ and radius R :

$$
B_{2}(R):=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1}^{2}+x_{2}^{2} \leq R^{2}\right\} .
$$

3. Where $n=3, B_{3}(R)$ is the sphere (ball) with center $O(0 ; 0 ; 0)$ and radius R :

$$
B_{3}(R):=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1}^{2}+x_{2}^{2}+x_{3}^{2} \leq R^{2}\right\} .
$$

There is an improtant problem: Compute the volume of the n -ball $B_{n}(R)$.
There are many results on this problem, for instance, see [1,2,3,5,6]. Moreover, in [4], the authors compute the volume of n -simplex.

In this paper, we will study some methods in computing the volume of n-balls in the Euclidean spaces and we give a survey on the methods. These methods we refer in $[1,3,4,5,6]$. They are not new results

The paper is organized as follows. Section II is preliminaries. Section III, we recall some methods in computation of the volume of n -balls in the Euclidean spaces.

International Journal of Advanced Research in Science, Engineering and Technology
 Vol. 8, Issue 11 , November 2021

II. PRELIMINARIES

In this section, we recall the notions and some properties of Gamma and Beta functions.

- The Gamma function (Euler):

$$
\Gamma(z)=\int_{0}^{\infty} e^{-t} t^{z-1} d t, \operatorname{Re} z>0 .
$$

- The Beta function:

$$
B(p, q)=\int_{0}^{1} x^{p-1}(1-x)^{q-1} d x
$$

We have some properties of the Gamma and Beta functions:

1. $\quad \Gamma(z+1)=z \Gamma(z), \operatorname{Rez}>0$.
2. $\quad \Gamma(n+1)=n$! với $n=0,1,2, \ldots$.
3. $\quad \Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$.
4. $\quad \Gamma(x+1) \sim \sqrt{2 \pi x}(x / e)^{x},(x \rightarrow \infty)$.
5. $B(p, q)=\frac{\Gamma(p) \Gamma(q)}{\Gamma(p+q)}$.
6. $\quad B(p, q)=B(q, p)$.

Note that Property 4 is the Stirling formula in calculus.

III. THE VOLUME OF N-BALLS IN THE EUCLIDEAN SPACES

Theorem 3.1. The volume of the n-ball, with the radius R, is the following formula:

$$
V_{n}(R)=\frac{\pi^{n / 2} R^{n}}{\Gamma\left(\frac{n}{2}+1\right)}
$$

We give here 3 methods to prove Theorem 3.1.

The method 1 (see [1])
We take $\mathbb{R}^{n}=\mathbb{R}^{n-2} \times \mathbb{R}^{2}$. Then $\left(x_{1}, \ldots, x_{n}\right) \in B_{n}(R)$ if and only if

$$
x_{1}^{2}+x_{2}^{2}+\cdots+x_{n-2}^{2}+x_{n-1}^{2}+x_{n}^{2} \leq R^{2},
$$

this is equivalent to

$$
x_{1}^{2}+x_{2}^{2}+\cdots+x_{n-2}^{2} \leq R^{2}-x_{n-1}^{2}-x_{n}^{2} .
$$

Hence,

International Journal of Advanced Research in Science, Engineering and Technology

Vol. 8, Issue 11 , November 2021

$$
\begin{aligned}
V_{n}(R) & =\int_{B_{n}(R)} d x_{1} d x_{2} \ldots d x_{n} \\
& =\int_{B_{2}(R)}\left(\int_{B_{n-2}\left(\sqrt{R^{2}-x_{n-1}^{2}-x_{n}^{2}}\right)} d x_{1} \ldots d x_{n-2}\right) d x_{n-1} d x_{n}
\end{aligned}
$$

By the induction, we have:

$$
V_{n}(R)=\frac{\pi^{(n-2) / 2}}{\Gamma\left(\frac{n-2}{2}+1\right)} \int_{B_{2}(R)}\left(R^{2}-x_{n-1}^{2}-x_{n}^{2}\right)^{(n-2) / 2} d x_{n-1} d x_{n} .
$$

By using the polar coordinates, we have

$$
\frac{\pi^{(n-2) / 2}}{\Gamma\left(\frac{n}{2}\right)} \int_{0}^{2 \pi} d \theta \int_{0}^{R}\left(R^{2}-t^{2}\right)^{(n-2) / 2} t d t=\frac{2 \pi^{n / 2}}{\Gamma\left(\frac{n}{2}\right)} \cdot \frac{R^{n}}{n}=\frac{\pi^{n / 2} R^{n}}{\Gamma\left(\frac{n}{2}+1\right)}
$$

The method 2 (see [5])
Since $\mathbb{R}^{n}=\mathbb{R}^{n-1} \times \mathbb{R}$, we have

$$
\begin{aligned}
V_{n}(R) & =\int_{B_{n}(R)} d x_{1} d x_{2} \ldots d x_{n} \\
& =\int_{B_{1}(R)}\left(\int_{B_{n-1}\left(\sqrt{R^{2}-x_{n}^{2}}\right)} d x_{1} \ldots d x_{n-1}\right) d x_{n}
\end{aligned}
$$

by the induction, we obtain

$$
\begin{aligned}
V_{n}(R) & =\frac{\pi^{(n-1) / 2}}{\Gamma\left(\frac{n-1}{2}+1\right)} \int_{-R}^{R}\left(R^{2}-x_{n}^{2}\right)^{(n-1) / 2} d x_{n} \\
& =\frac{2 \pi^{(n-1) / 2}}{\Gamma\left(\frac{n+1}{2}\right)} \int_{0}^{R}\left(R^{2}-x_{n}^{2}\right)^{(n-1) / 2} d x_{n}
\end{aligned}
$$

put $x_{n}=R \sqrt{t}$, we have

$$
\begin{aligned}
V_{n}(R) & =\frac{2 \pi^{(n-1) / 2}}{\Gamma\left(\frac{n+1}{2}\right)} \frac{R^{n}}{2} \int_{0}^{1}(1-t)^{(n-1) / 2} t^{-1 / 2} d t \\
& =R^{n} \frac{\pi^{(n-1) / 2}}{\Gamma\left(\frac{n+1}{2}\right)} B\left(\frac{n+1}{2}, \frac{1}{2}\right) \\
& =R^{n} \frac{\pi^{(n-1) / 2}}{\Gamma\left(\frac{n+1}{2}\right)} \frac{\Gamma\left(\frac{n+1}{2}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{n}{2}+1\right)}
\end{aligned}
$$

Since $\Gamma\left(\frac{1}{2}\right)=\pi^{1 / 2}$, we obtain $V_{n}(R)=\frac{\pi^{n / 2} R^{n}}{\Gamma\left(\frac{n}{2}+1\right)}$.

International Journal of Advanced Research in Science, Engineering and Technology

Vol. 8, Issue 11 , November 2021

The method 3 (Lasserre's method)

Lasserre considered a functional and use the Laplace transform to prove the theorem (see [4]).
Let consider $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$,

$$
y \mapsto f(y):=\int_{\|x\|^{2} \leq y} d x .
$$

This function is the formula of the volume of sphere with radius \sqrt{y}. Let consider the Laplace transform $F: \mathbb{C} \rightarrow \mathbb{C}$ which is defined by:

$$
z \mapsto F(z):=\int_{0}^{\infty} e^{-z y} f(y) d y, z \in \mathbb{C}, \operatorname{Re}(z)>0 .
$$

Then we have

$$
\begin{aligned}
F(z) & =\int_{0}^{\infty} e^{-z y}\left[\int_{\|x\| \|^{2} \leq y} d x\right] d y \\
& =\int_{\mathbb{R}^{n}}\left[\int_{\|x\|^{2}}^{\infty} e^{-z y} d y\right] d x \\
& =z^{-1} \int_{\mathbb{R}^{n}} e^{-z\|x\|^{2}} d x \\
& =z^{-1} \prod_{i=1}^{n} \int_{-\infty}^{\infty} e^{-z x_{i}^{2}} d x_{i} \\
& =z^{-1}[\pi / z]^{n / 2} \\
& =z^{-n / 2-1} \pi^{n / 2}=\frac{\pi^{n / 2}}{\Gamma(n / 2+1)} \cdot \frac{\Gamma(n / 2+1)}{z^{n / 2+1}} .
\end{aligned}
$$

It is easy to see that $\frac{\Gamma(n / 2+1)}{z^{n / 2+1}}$ is an image of the Laplacian transform of $y^{n / 2}$, i.e.

$$
\frac{\Gamma(n / 2+1)}{z^{n / 2+1}}=\mathcal{L}\left(y^{n / 2}\right)
$$

Therefore,

$$
f(y)=\frac{\pi^{n / 2}}{\Gamma(n / 2+1)} y^{n / 2}
$$

By the properties of the Laplacian transform, we have:

$$
\mathcal{L}(f)=\mathcal{L}(g) \Rightarrow f=g
$$

The theorem is proved.
We have the following consequence.

Corollary 3.2.

For $R>0, \lim _{n \rightarrow \infty} V_{n}(R)=0$.
It is easy to prove the corollary by using Stirling formula (Property 4).
Copyright to IJARSET

ISSN: 2350-0328

International Journal of Advanced Research in Science, Engineering and Technology

Vol. 8, Issue 11 , November 2021

Moreover, some works give results on the volume of balls in the complex spaces Π^{n}. For instance, we recall Hijab's result (see [2]).

Theorem 3.3. (Hijab [2])
The volume of the unit balls

$$
B=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}:\left|z_{1}\right|^{2}+\cdots+\left|z_{n}\right|^{2}<1\right\}
$$

is $\pi^{n} / n!$.
Consequently, we have, $\lim _{n \rightarrow \infty} V_{n}(B)=0$.
Acknowledgements The author would like to thank the reviewers for valuable comments.

REFERENCES

[1]. T. M. Apostol, Calculus, Volume 2, second edition, Wiley, 1969.
[2]. O. Hijab, The Volume of the unit ball in \mathbb{C}^{n}, The American Mathematical Monthly, Vol. 107, No. 3 (2000), pp. 259
[3]. J. B. Lasserre, A Quick proof for the Volume of n-Balls, The American Mathematical Monthly, Vol. 108, No. 8 (2001), pp. 768-769.
[4]. H. Park, The volume of the Unit n-Ball, Mathematics Magazine, Vol. 86, No. 4 (2013), pp. 270-274
[5]. D. J. Smith and M. K. Vamanamurthy, How small is a unit ball? Mathematics Magazine, Vol. 62, No. 2 (1989), pp. 101-107.
[6]. X. Wang, Volumes of Generalized Unit Balls, Mathematics Magazine, Vol. 78, No. 5 (2021), pp. 390-395.

