

ISSN: 2350-0328

International Journal of Advanced Research in Science, Engineering and Technology

Vol. 8, Issue 11, November 2021

On the volume of n-balls

Dũng P. Hoàng

M.Sc., Lecturer of Faculty of Fundamental Sciences, Posts and Telecommunications Institute of Technology, Hanoi, Vietnam

ABSTRACT: In this paper, we give a survey on some recent results on the volume of n-ball in the Euclidean space \mathbb{R}^n .

KEYWORDS: Volume, n-balls, spheres.

I. INTRODUCTION

The n-balls or spheres in the Euclidean spaces is a basic object in mathematics. In calculus, geometry, topology,... the n-

balls appear in many examples. In 2-dim spaces, we have the area πR^2 , in 3-dim spaces, we have the volume $\frac{4}{2}\pi R^3$.

But in higher dimension spaces, there is no way to draw the n-balls. Therefore, it is difficult to image them and compute their volume is not trivial problem.

How to compute their volume? And how small the n-ball when n tends to infinity? These are natural questions. It is well-known how to use the gamma function to compute the are or volume of an n-ball of the radius R. Many authors try to answer the above questions by different methods.

Firstly, we have the following definition of n-balls in the Euclidean \mathbb{R}^n .

Definition 1.1 The set

$$B_n(R) := \{ (x_1, \dots, x_n) \in \mathbb{R}^n | x_1^2 + x_2^2 + \dots + x_n^2 \le R^2 \},\$$

where *R* is a positive number, is called a n-ball with radius *R* in the Euclidean space \mathbb{R}^n , $n \ge 1$.

- 1. Where n = 1, $B_1(R)$ is the interval [-R; R].
- 2. Where n = 2, $B_2(R)$ is the circle with center O(0; 0) and radius R:

$$B_2(R) := \{ (x_1, x_2) \in \mathbb{R}^2 | x_1^2 + x_2^2 \le R^2 \}.$$

3. Where n = 3, $B_3(R)$ is the sphere (ball) with center O(0; 0; 0) and radius R:

 $B_3(R) := \{ (x_1, x_2, x_3) \in \mathbb{R}^3 | x_1^2 + x_2^2 + x_3^2 \le R^2 \}.$

There is an improtant problem: Compute the volume of the n-ball $B_n(R)$.

There are many results on this problem, for instance, see [1,2,3,5,6]. Moreover, in [4], the authors compute the volume of n-simplex.

In this paper, we will study some methods in computing the volume of n-balls in the Euclidean spaces and we give a survey on the methods. These methods we refer in [1,3,4,5,6]. They are not new results.

The paper is organized as follows. Section II is preliminaries. Section III, we recall some methods in computation of the volume of n-balls in the Euclidean spaces.

www.ijarset.com

ISSN: 2350-0328 International Journal of Advanced Research in Science, Engineering and Technology

Vol. 8, Issue 11, November 2021

II. PRELIMINARIES

In this section, we recall the notions and some properties of Gamma and Beta functions.

• The Gamma function (Euler):

$$\Gamma(z) = \int_0^\infty e^{-t} t^{z-1} dt, Rez > 0.$$

• The Beta function:

$$B(p,q) = \int_0^1 x^{p-1} (1-x)^{q-1} dx.$$

We have some properties of the Gamma and Beta functions:

1. $\Gamma(z+1) = z\Gamma(z), Rez > 0.$ 2. $\Gamma(n+1) = n! \text{ vói } n = 0,1,2,...$ 3. $\Gamma(\frac{1}{2}) = \sqrt{\pi}.$ 4. $\Gamma(x+1) \sim \sqrt{2\pi x} (x/e)^x, (x \to \infty).$ 5. $B(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}.$ 6. B(p,q) = B(q,p).

Note that Property 4 is the Stirling formula in calculus.

III. THE VOLUME OF N-BALLS IN THE EUCLIDEAN SPACES

Theorem 3.1. *The volume of the n-ball, with the radius R, is the following formula:*

$$V_n(R) = \frac{\pi^{n/2} R^n}{\Gamma(\frac{n}{2} + 1)}.$$

We give here 3 methods to prove Theorem 3.1.

The method 1 (see [1])

We take $\mathbb{R}^n = \mathbb{R}^{n-2} \times \mathbb{R}^2$. Then $(x_1, \dots, x_n) \in B_n(R)$ if and only if

$$x_1^2 + x_2^2 + \dots + x_{n-2}^2 + x_{n-1}^2 + x_n^2 \le R^2$$
,

this is equivalent to

$$x_1^2 + x_2^2 + \dots + x_{n-2}^2 \le R^2 - x_{n-1}^2 - x_n^2.$$

Hence,

Copyright to IJARSET

www.ijarset.com

ISSN: 2350-0328

International Journal of Advanced Research in Science, Engineering and Technology

Vol. 8, Issue 11 , November 2021

$$V_n(R) = \int_{B_n(R)} dx_1 dx_2 \dots dx_n$$

= $\int_{B_2(R)} \left(\int_{B_{n-2}(\sqrt{R^2 - x_{n-1}^2 - x_n^2})} dx_1 \dots dx_{n-2} \right) dx_{n-1} dx_n$

By the induction, we have:

$$V_n(R) = \frac{\pi^{(n-2)/2}}{\Gamma(\frac{n-2}{2}+1)} \int_{B_2(R)} (R^2 - x_{n-1}^2 - x_n^2)^{(n-2)/2} dx_{n-1} dx_n.$$

By using the polar coordinates, we have

$$\frac{\pi^{(n-2)/2}}{\Gamma(\frac{n}{2})} \int_0^{2\pi} d\theta \int_0^R (R^2 - t^2)^{(n-2)/2} t dt = \frac{2\pi^{n/2}}{\Gamma(\frac{n}{2})} \cdot \frac{R^n}{n} = \frac{\pi^{n/2} R^n}{\Gamma(\frac{n}{2} + 1)}$$

The method 2 (see [5])

Since $\mathbb{R}^n = \mathbb{R}^{n-1} \times \mathbb{R}$, we have

$$V_n(R) = \int_{B_n(R)} dx_1 dx_2 \dots dx_n$$

= $\int_{B_1(R)} (\int_{B_{n-1}(\sqrt{R^2 - x_n^2})} dx_1 \dots dx_{n-1}) dx_n,$

by the induction, we obtain

$$V_n(R) = \frac{\pi^{(n-1)/2}}{\Gamma(\frac{n-1}{2}+1)} \int_{-R}^{R} (R^2 - x_n^2)^{(n-1)/2} dx_n$$
$$= \frac{2\pi^{(n-1)/2}}{\Gamma(\frac{n+1}{2})} \int_{0}^{R} (R^2 - x_n^2)^{(n-1)/2} dx_n,$$

put $x_n = R\sqrt{t}$, we have

$$V_n(R) = \frac{2\pi^{(n-1)/2}}{\Gamma(\frac{n+1}{2})} \frac{R^n}{2} \int_0^1 (1-t)^{(n-1)/2} t^{-1/2} dt$$
$$= R^n \frac{\pi^{(n-1)/2}}{\Gamma(\frac{n+1}{2})} B(\frac{n+1}{2}, \frac{1}{2})$$
$$= R^n \frac{\pi^{(n-1)/2}}{\Gamma(\frac{n+1}{2})} \frac{\Gamma(\frac{n+1}{2})\Gamma(\frac{1}{2})}{\Gamma(\frac{n}{2}+1)}$$

Since $\Gamma(\frac{1}{2}) = \pi^{1/2}$, we obtain $V_n(R) = \frac{\pi^{n/2}R^n}{\Gamma(\frac{n}{2}+1)}$.

Copyright to IJARSET

www.ijarset.com

ISSN: 2350-0328 International Journal of Advanced Research in Science, Engineering and Technology

Vol. 8, Issue 11 , November 2021

The method 3 (Lasserre's method)

Lasserre considered a functional and use the Laplace transform to prove the theorem (see [4]).

Let consider $f: \mathbb{R}^+ \to \mathbb{R}^+$,

$$y \mapsto f(y) := \int_{\|x\|^2 \le y} dx.$$

This function is the formula of the volume of sphere with radius \sqrt{y} . Let consider the Laplace transform $F: \mathbb{C} \to \mathbb{C}$ which is defined by:

$$z \mapsto F(z) := \int_0^\infty e^{-zy} f(y) dy, z \in \mathbb{C}, Re(z) > 0.$$

Then we have

$$F(z) = \int_{0}^{\infty} e^{-zy} \left[\int_{\|x\|^{2} \le y} dx \right] dy$$

= $\int_{\mathbb{R}^{n}} \left[\int_{\|x\|^{2}}^{\infty} e^{-zy} dy \right] dx$
= $z^{-1} \int_{\mathbb{R}^{n}} e^{-z\|x\|^{2}} dx$
= $z^{-1} \prod_{i=1}^{n} \int_{-\infty}^{\infty} e^{-zx_{i}^{2}} dx_{i}$
= $z^{-1} [\pi/z]^{n/2}$
= $z^{-n/2-1} \pi^{n/2} = \frac{\pi^{n/2}}{\Gamma(n/2+1)} \cdot \frac{\Gamma(n/2+1)}{z^{n/2+1}}.$

It is easy to see that $\frac{\Gamma(n/2+1)}{z^{n/2+1}}$ is an image of the Laplacian transform of $y^{n/2}$, i.e.

$$\frac{\Gamma(n/2+1)}{z^{n/2+1}} = \mathcal{L}(y^{n/2}).$$

Therefore,

$$f(y) = \frac{\pi^{n/2}}{\Gamma(n/2+1)} y^{n/2}.$$

By the properties of the Laplacian transform, we have:

$$\mathcal{L}(f) = \mathcal{L}(g) \Rightarrow f = g.$$

The theorem is proved.

We have the following consequence.

Corollary 3.2.

For R > 0, $\lim_{n \to \infty} V_n(R) = 0$.

It is easy to prove the corollary by using Stirling formula (Property 4). Copyright to IJARSET <u>www.ijarset.com</u>

18648

ISSN: 2350-0328 International Journal of Advanced Research in Science, **Engineering and Technology**

Vol. 8, Issue 11, November 2021

Moreover, some works give results on the volume of balls in the complex spaces \square^n . For instance, we recall Hijab's result (see [2]).

Theorem 3.3. (Hijab [2])

The volume of the unit balls

$$B = \{(z_1, \dots, z_n) \in \mathbb{C}^n : |z_1|^2 + \dots + |z_n|^2 < 1\}$$

is $\pi^n/n!$.

Consequently, we have, $\lim_{n \to \infty} V_n(B) = 0$.

Acknowledgements The author would like to thank the reviewers for valuable comments.

REFERENCES

[1]. T. M. Apostol, Calculus, Volume 2, second edition, Wiley, 1969.

- [2]. O. Hijab, *The Volume of the unit ball in* \mathbb{C}^n , The American Mathematical Monthly, Vol. 107, No. 3 (2000), pp. 259. [3]. J. B. Lasserre, *A Quick proof for the Volume of n-Balls*, The American Mathematical Monthly, Vol. 108, No. 8 (2001), pp. 768-769.
- [4]. H. Park, The volume of the Unit n-Ball, Mathematics Magazine, Vol. 86, No. 4 (2013), pp. 270-274.
- [5]. D. J. Smith and M. K. Vamanamurthy, How small is a unit ball? Mathematics Magazine, Vol. 62, No. 2 (1989), pp. 101-107.
- [6]. X. Wang, Volumes of Generalized Unit Balls, Mathematics Magazine, Vol. 78, No. 5 (2021), pp. 390-395.